cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305310 Numbers k(n) used for Cassels's Markoff forms MF(n) corresponding to the conjectured unique Markoff triples MT(n) with maximal entry m(n) = A002559(n), for n >= 1.

Original entry on oeis.org

0, 1, 2, 5, 12, 13, 34, 70, 75, 89, 179, 233, 408, 507, 610, 1120, 1597, 2378, 2673, 2923, 3468, 4181, 6089, 10946, 13860, 15571, 16725, 19760, 23763, 28657, 39916, 51709, 80782, 75025, 113922, 162867, 206855, 196418, 249755, 353702
Offset: 1

Views

Author

Wolfdieter Lang, Jun 26 2018

Keywords

Comments

For these Markoff forms see Cassels, p. 31. A link to the two original Markoff references is given in A305308.
MF(n) = f_{m(n)}(x, y) = m(n)*F_{m(n)}(x, y) = m(n)*x^2 + (3*m(n) - 2*k(n))*x*y + (l(n) - 3*k(n))*y^2, with the Markoff number m = m(n) = A002559(n) and l(n) = (k(n)^2 + 1)/m(n), for n >= 1.
Every m(n) is proved to appear as largest member of a Markoff triple MT(n) = (m_1(n), m_2(n), m(n)), with positive integers m_1(n) < m_2(n) < m(n) for n >= 3 (MT(1) = (1, 1, 1) and MT(2) = (1, 1, 2)) satisfying the Markoff equation m_1(n)^2 + m_2(n)^2 + m(n)^2 = 3*m_1(n)*m_2(n)*m(n). The famous Markoff uniqueness conjecture is that m(n) as largest member determines exactly one ordered triple MT(n). See, e.g., the Aigner reference, pp. 38-39, and Corollary 3.5, p. 48. [In numerating the sequence with n related to A002559(n) this conjecture is assumed to be true. - Wolfdieter Lang, Jul 29 2018]
The nonnegative integers k(n) are defined for the Markoff forms given by Cassels by k(n) = min{k1(n), k2(n)}, where m_1(n)*k1(n) - m_2(n) == 0 (mod m(n)), with 0 <= k1(n) < m(n), and m_2(n)*k2(n) - m_1(n) == 0 (mod m(n)), with 0 <= k2(n) < m(n). The k1 and k2 sequences are k1 = [0, 1, 2, 5, 17, 13, 34, 99, 119, 89, 179, 233, 577, 818, 610, 1777, 1597, 3363, 2673, 2923, 5609, 4181, 6089, 10946, 19601, 22095, 26536, 31881, 38447, 28657, 39916, 51709, 114243, 75025, 113922, 263522, 206855, 196418, 396263, 572063, ...], and k2 = [0, 1, 3, 8, 12, 21, 55, 70, 75, 144, 254, 377, 408, 507, 987, 1120, 2584, 2378, 3793, 4638, 3468, 6765, 8612, 17711, 13860, 15571, 16725, 19760, 23763, 46368, 56641, 83428, 80782, 121393, 180763, 162867, 292538, 317811, 249755, 353702, ...].
The discriminant of the form MF(n) = f_{m(n)}(x, y) is D(n) = 9*m(n)^2 - 4. D(n) = A305312(n), for n >= 1. Because D(n) > 0 (not a square) this is an indefinite binary quadratic form, for n >= 1. See Cassels Fig. 2 on p. 32 for the Markoff tree with these forms.
The quadratic irrational xi, determined by the solution with positive square root of f_{m(n)}(x, 1) = 0, is xi(n) = ((2*k - 3*m) + sqrt(D))/(2*m) (the argument n has been dropped). The regular continued fraction is eventually periodic, but not purely periodic. One can find equivalent Markoff forms determining purely periodic quadratic irrationals. The corresponding k sequence is given in A305311.
For the approximation of xi(n) with infinitely many rationals (in lowest terms) Perron's unimodular invariant M(xi) enters. For quadratic irrationals M(xi) < 3, and the values coincide with the discrete Lagrange spectrum < 3: M(xi(n)) = Lagrange(n) = sqrt{D(n)}/m(n), n >= 1. For n=1..4 see A002163, A010466, A200991 and A305308.

Examples

			n = 5: a(5) = k(5) = 12 because m(5) = A002559(5) = 29 with the triple MT(5) = (2, 5, 29). Whence 2*k1(5) - 5 == 0 (mod 29) for k1(5) = 17 < 29, and 5*k2(5) - 2 == 0 (mod 29) leads to k2(5) = 12. The smaller value is k2(5) = k(5) = 12. This leads to the form coefficients MF(5) = [29, 63, -31].
The forms MF(n) = [m(n), 3*m(n) - k(n), l(n) - 3*k(n)] with l(n) := (k(n)^2 + 1)/m(n) begin: [1, 3, 1], [2, 4, -2], [5, 11, -5], [13, 29, -13], [29, 63, -31], [34, 76, -34], [89, 199, -89], [169, 367, -181], [194, 432, -196], [233, 521, -233], [433, 941, -463], [610, 1364, -610], [985, 2139, -1055], [1325, 2961, -1327], [1597, 3571, -1597], [2897, 6451, -2927], [4181, 9349, -4181], [5741, 12467, -6149], [6466, 14052, -6914], [7561, 16837, -7639] ... .
The quadratic irrationals xi(n) = ((2*k(n) - 3*m(n)) + sqrt(D(n)))/(2*m(n)) begin: (-3 + sqrt(5))/2, -1 + sqrt(2), (-11 + sqrt(221))/10, (-29 + sqrt(1517))/26, (-63 + sqrt(7565))/58, (-19 + 5*sqrt(26))/17, (-199 + sqrt(71285))/178, (-367 + sqrt(257045))/338, (-108 + sqrt(21170))/97, (-521 + sqrt(488597))/466, (-941 + sqrt(1687397))/866, (-341 + sqrt(209306))/305, (-2139 + sqrt(8732021))/1970, (-2961 + sqrt(15800621))/2650, (-3571 + sqrt(22953677))/3194, (-6451 + sqrt(75533477))/5794, (-9349 + sqrt(157326845))/8362, (-12467 + 5*sqrt(11865269))/11482, (-3513 + 5*sqrt(940706))/3233, (-16837 + sqrt(514518485))/15122, ... .
The invariant M(xi(n)) = Lagrange(n) numbers begin with n >=1: sqrt(5), 2*sqrt(2), (1/5)*sqrt(221), (1/13)*sqrt(1517), (1/29)*sqrt(7565), (10/17)*sqrt(26), (1/89)*sqrt(71285), (1/169)*sqrt(257045), (2/97)*sqrt(21170), (1/233)*sqrt(488597), (1/433)*sqrt(1687397), (2/305)*sqrt(209306), (1/985)*sqrt(8732021), (1/1325)*sqrt(15800621), (1/1597)*sqrt(22953677), (1/2897)*sqrt(75533477), (1/4181)*sqrt(157326845), (5/5741)*sqrt(11865269), (10/3233)*sqrt(940706), (1/7561)*sqrt(514518485), ... .
		

References

  • Martin Aigner, Markov's Theorem and 100 Years of the Uniqueness Conjecture, Springer, 2013.
  • J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 172-180 and 222-224.
  • Oskar Perron, Über die Approximation irrationaler Zahlen durch rationale, Sitzungsber. Heidelberger Akademie der Wiss., 1921, 4. Abhandlung, pp. 1-17 , and part II., 8. Abhandlung, pp.1-12, Carl Winters Universitätsbuchhandlung.

Crossrefs

Formula

a(n) = k(n) has been defined in terms of the (conjectured unique) ordered Markoff triple MT(n) = (m_1(n), m_2(n), m(n)) with m(n) = A002559(n) in the comment above as k(n) = min{k1(n), k2(n)}, where m_1(n)*k1(n) - m_2(n) == 0 (mod m(n)), with 0 <= k1(n) < m(n), and m_2(n)*k2(n) - m_1(n) == 0 (mod m(n)), with 0 <= k2(n) < m(n).

A305308 Decimal expansion of Lagrange(4) = sqrt(1517)/13.

Original entry on oeis.org

2, 9, 9, 6, 0, 5, 2, 6, 2, 9, 8, 6, 9, 2, 9, 9, 4, 6, 9, 2, 3, 4, 1, 3, 9, 4, 0, 2, 6, 2, 6, 3, 1, 8, 6, 3, 9, 7, 5, 8, 3, 0, 2, 1, 9, 1, 5, 0, 0, 5, 6, 4, 4, 4, 8, 1, 4, 0, 5, 2, 6, 3, 4, 0, 6, 5, 6, 0, 1, 0, 3, 4, 0, 4, 3, 5, 8, 8, 8, 9, 9, 8, 0, 2, 7, 1, 3, 2, 6, 1, 7, 9, 0, 9, 3, 9, 8, 2, 1, 8, 5, 3, 0
Offset: 1

Views

Author

Wolfdieter Lang, Jun 25 2018

Keywords

Comments

For every irrational number alpha not equivalent to each of the following three numbers i) golden section A001622, ii) sqrt(2) = A002193 and iii) (5 + sqrt(221))/14 = A177841 there exist infinitely many rational numbers h/k (in lowest terms) such that |alpha - h/k| < 1/(Lagrange(4)*k^2). The constant L(4) cannot be replaced by a larger number because then the statement becomes false for, e.g., alpha = (23 + sqrt(1517))/26. Two real numbers x and y are equivalent if there exist integers p, q, r and s with |p*s - q*r| = 1 such that y = (p*x + q)/(r*x + s) (unimodular transformation). This means that the continued fractions of x and y become eventuakky identical.
See the references (in Havil, p. 174, equivalence classes of numbers should have been excluded).
The continued fraction of Lagrange(4) is [2; repeat(1, 252, 3, 1012, 3, 252, 1, 4)]. 1/L(4) = 0.3337725078... < 1/3.
Perron's numbers M(xi) (pp. 4, 5), for M(xi) < 3, are the Lagrange numbers sqrt(9*Q^2 - 4)/Q, with Q = Q(n) = A002559(n), n >= 1, and his corresponding xi(4) = (sqrt(1517) + 23)/26 with a purely periodic simple continued fraction [repeat(2, 2, 1, 1, 1, 1)].
Cassels (p. 18) uses the version: For irrational theta not equivalent to the above given three numbers i), ii) and iii) there are infinitely many solutions of q*||q*theta|| < 1/Lagrange(4), where 1/Lagrange(4) cannot be improved for theta equivalent to -29/26 + (1/26)*sqrt(1517). Here ||x|| is the positive difference between x and the nearest integer.

Examples

			2.9960526298692994692341394026263186397583021915005644481405263406560103404...
		

References

  • J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 174-175 and 221-224.
  • J. F. Koksma, Diophantische Approximationen, 1936, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vierter Band, Teil 4, Julius Springer, Berlin, pp. 29-33.
  • Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, p. 14.
  • Oskar Perron, Über die Approximation irrationaler Zahlen durch rationale, 4. Abhandlung, pp. 1- 17, and part II., 8. Abhandlung, pp. 1-12. Sitzungsber. Heidelberger Akademie der Wiss., 1921, Carls Winters Universitätsbuchhandlung.
  • Paulo Ribenboim, Meine Zahlen, meine Freunde, 2009, Springer, 10. 6 B, pp. 312-314.
  • Jörn Steuding, Diophantine Analysis, 2005, Chapman & Hall/CRC, pp. 80-82.

Crossrefs

The Lagrange numbers for n = 1..3 are A002163, A010466, A200991.

Programs

  • Mathematica
    RealDigits[Sqrt[1517]/13,10,120][[1]] (* Harvey P. Dale, Apr 12 2022 *)

Formula

Lagrange(4) = sqrt(9*M(4)^2 - 4)/M(4) = sqrt(9*13^2 - 4)/13 = sqrt(1517)/13, with the Markoff number M(4) = A002559(4) = 13.

A382098 a(n) is the numerator of the square of the n-th Lagrange number.

Original entry on oeis.org

5, 8, 221, 1517, 7565, 2600, 71285, 257045, 84680, 488597, 1687397, 837224, 8732021, 15800621, 22953677, 75533477, 157326845, 296631725, 94070600, 514518485, 741527357, 269583560, 1945074605, 7391012837, 10076746685, 3192137000, 16843627085, 24001135925, 8707689224
Offset: 1

Views

Author

Stefano Spezia, Mar 15 2025

Keywords

Examples

			5/1 = A002163^2;
8/1 = A010466^2;
221/25 = A200991^2;
1517/169 = A305308^2;
...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 187.

Crossrefs

Cf. A002559, A382099 (denominators).

Formula

a(n) = numerator(9 - 4/A002559(n)^2).
Limit_{n->oo} a(n)/A382099(n) = 9.

A382099 a(n) is the denominator of the square of the n-th Lagrange number.

Original entry on oeis.org

1, 1, 25, 169, 841, 289, 7921, 28561, 9409, 54289, 187489, 93025, 970225, 1755625, 2550409, 8392609, 17480761, 32959081, 10452289, 57168721, 82391929, 29953729, 216119401, 821223649, 1119638521, 354681889, 1871514121, 2666792881, 967521025, 5628750625, 9323254249
Offset: 1

Views

Author

Stefano Spezia, Mar 15 2025

Keywords

Examples

			5/1 = A002163^2;
8/1 = A010466^2;
221/25 = A200991^2;
1517/169 = A305308^2;
...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 187.

Crossrefs

Cf. A002559, A382098 (numerators).

Formula

a(n) = denominator(9 - 4/A002559(n)^2).
Limit_{n->oo} A382098(n)/a(n) = 9.
Showing 1-4 of 4 results.