cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201147 Numbers m such that m, m-1 and m-2 are 1,2,3-almost primes respectively.

Original entry on oeis.org

47, 107, 167, 263, 347, 359, 467, 479, 563, 863, 887, 983, 1019, 1187, 1283, 1907, 2039, 2063, 2099, 2447, 2819, 2879, 3023, 3167, 3203, 3623, 3803, 3947, 4139, 4919, 5387, 5399, 5507, 5879, 6599, 6659, 6983, 7079, 7187, 7523, 7559, 7703, 8423, 8699, 8963
Offset: 1

Views

Author

Antonio Roldán, Nov 27 2011

Keywords

Comments

m-2 is multiple of 3.
m is of the form 12k-1.
This sequence is subset of A005385.
Following a suggestion of Claudio Meller.

Examples

			2099 is prime, 2098=2*1049 is semiprime, 2097=3*3*233 is 3-almost prime.
		

Crossrefs

Programs

  • Mathematica
    primeCount[n_] := Plus @@ Transpose[FactorInteger[n]][[2]]; Select[Range[10000], primeCount[#] == 1 && primeCount[#-1] == 2 && primeCount[#-2] == 3 &] (* T. D. Noe, Nov 28 2011 *)
    Select[Range[10000],PrimeOmega[Range[#,#+2]]=={3,2,1}&]+2 (* Harvey P. Dale, Dec 10 2011 *)
  • PARI
    list(lim)=my(v=List(),L=(lim-2)\3,t); forprime(p=3,L\3, forprime(q=3,min(p,L\p), t=3*p*q+2; if(isprime(t) && isprime((t-1)/2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017