A201220 Numbers m such that m, m-1, m-2 and m-3 are 1,2,3,4-almost primes respectively.
107, 263, 347, 479, 863, 887, 1019, 2063, 2447, 3023, 3167, 3623, 5387, 5399, 5879, 6599, 6983, 7079, 8423, 8699, 9743, 9887, 10463, 11807, 12263, 12347, 14207, 15383, 15767, 18959, 20663, 22343, 23039, 23567, 24239, 27239, 32183, 33647, 33767, 37799
Offset: 1
Keywords
Examples
6599 is prime, 6598=2*3299 is semiprime, 6597=3*3*733 is 3-almost prime, 6596=2*2*17*97 is 4-almost prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1700
Crossrefs
Programs
-
Mathematica
primeCount[n_] := Plus @@ Transpose[FactorInteger[n]][[2]]; Select[Range[40000], primeCount[#] == 1 && primeCount[#-1] == 2 && primeCount[#-2] == 3 && primeCount[#-3] == 4 &] (* T. D. Noe, Nov 28 2011 *) Select[Range[40000],PrimeOmega[Range[#,#+3]]=={4,3,2,1}&]+3 (* Harvey P. Dale, Dec 10 2011 *) SequencePosition[PrimeOmega[Range[40000]],{4,3,2,1}][[;;,2]] (* Harvey P. Dale, Oct 08 2023 *)
-
PARI
list(lim)=my(v=List(), L=(lim-2)\3, t); forprime(p=3, L\3, forprime(q=3, min(p, L\p), t=3*p*q+2; if(isprime(t) && isprime((t-1)/2) && bigomega(t-3)==4, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 02 2017
Comments