A201227 a(n) = (A201225(n))^3 - (A201226(n))^2.
219375, 4566375, 82569375, 1482276375, 26598999375, 477300306375, 8564807109375, 153689228256375, 2757841302099375, 49487454210126375, 888016334480769375, 15934806566444316375, 285938501861517519375, 5130958226940871626375, 92071309583074172349375
Offset: 1
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (19, -19, 1).
Programs
-
Mathematica
LinearRecurrence[{19,-19,1},{219375,4566375,82569375},30] (* Harvey P. Dale, Sep 25 2012 *)
Formula
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3).
G.f.: x*(3375*(-65-118*x+7*x^2))/((-1+x)*(1-18*x+x^2)).
a(n) = 3375*(-11-(-2+sqrt(5))*(9+4*sqrt(5))^(-n)+(2+sqrt(5))*(9+4*sqrt(5))^n). - Colin Barker, Mar 03 2016
Comments