cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A201780 Riordan array ((1-x)^2/(1-2x), x/(1-2x)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 5, 4, 1, 4, 12, 13, 6, 1, 8, 28, 38, 25, 8, 1, 16, 64, 104, 88, 41, 10, 1, 32, 144, 272, 280, 170, 61, 12, 1, 64, 320, 688, 832, 620, 292, 85, 14, 1, 128, 704, 1696, 2352, 2072, 1204, 462, 113, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2011

Keywords

Comments

Diagonals ascending: 1, 0, 1, 1, 2, 2, 4, 5, 1, 8, 12, 4, ... (see A201509).

Examples

			Triangle begins:
  1;
  0,  1;
  1,  2,  1;
  2,  5,  4,  1;
  4, 12, 13,  6,  1;
  8, 28, 38, 25,  8,  1;
		

Crossrefs

Row sums: A052156

Programs

  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x)^2/(1-(y+2)*x) + O[x]^10, x] // Flatten (* Jean-François Alcover, Nov 03 2018 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) with T(0,0) = 0, T(1,0) = 0, T(2,0) = 0 and T(n,k)= 0 if k < 0 or if n < k.
Sum_{k=0..n} T(n,k)*x^k = A154955(n+1), A034008(n), A052156(n), A055841(n), A055842(n), A055846(n), A055270(n), A055847(n), A055995(n), A055996(n), A056002(n), A056116(n) for x = -1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)^2/(1-(y+2)*x).

A201863 Let CZ(0,x)=1, CZ(1,x)=0 , CZ(2,x)=x^2-1 and CZ(n,x)=2*x*CZ(n-1,x) - CZ(n-2,x) for n > 2. This sequence is the triangle of polynomial coefficients in order of decreasing exponents.

Original entry on oeis.org

1, 0, 0, 1, 0, -1, 2, 0, -2, 0, 4, 0, -5, 0, 1, 8, 0, -12, 0, 4, 0, 16, 0, -28, 0, 13, 0, -1, 32, 0, -64, 0, 38, 0, -6, 0, 64, 0, -144, 0, 104, 0, -25, 0, 1, 128, 0, -320, 0, 272, 0, -88, 0, 8, 0, 256, 0, -704, 0, 688, 0, -280, 0, 41, 0, -1
Offset: 0

Views

Author

Paul Curtz, Dec 06 2011

Keywords

Comments

From (A039991 without 0's=) A028297 we wrote in A201509
1, 1,
2, 2,
4, 5, 1,
8, 12, 4.
Hence a(n) first coefficients:
1,
0, 0
1, 0,- 1, x^2-1,
2, 0, -2, 0,
4, 0, -5, 0, 1
8, 0,-12, 0, 4, 0.
The first 1 is a choice.
Row sums=0.
Absolute value row sums: 1 before A163271.
First vertical:A034008=1 before A131577. Third:-A045623.
Mirror image of triangle in A076626. - Philippe Deléham, Dec 07 2011

Crossrefs

A076626 Array of coefficients of polynomials p(n,x) = 2^(n-1)*Product_{i=0..n} (x - cos(i*Pi/n)) of degree (n+1) with P(-1,x) = 1, P(0,x) = 0.

Original entry on oeis.org

1, 0, 0, -1, 0, 1, 0, -2, 0, 2, 1, 0, -5, 0, 4, 0, 4, 0, -12, 0, 8, -1, 0, 13, 0, -28, 0, 16, 0, -6, 0, 38, 0, -64, 0, 32, 1, 0, -25, 0, 104, 0, -144, 0, 64, 0, 8, 0, -88, 0, 272, 0, -320, 0, 128, -1, 0, 41, 0, -280, 0, 688, 0, -704, 0, 256, 0, -10, 0, 170, 0, -832, 0, 1696, 0, -1536, 0, 512, 1, 0, -61, 0, 620, 0, -2352, 0, 4096, 0, -3328, 0, 1024
Offset: 0

Views

Author

Benoit Cloitre, Oct 22 2002

Keywords

Comments

Mirror image of triangle in A201863. - Philippe Deléham, Dec 07 2011

Examples

			p(4,x) = 8*x^5 - 12*x^3 + 4*x hence 0,4,0,-12,0,8 are terms in the sequence.
From _Philippe Deléham_, Dec 07 2011: (Start)
Triangle begins:
   1;
   0,    0;
  -1,    0,    1;
   0,   -2,    0,    2;
   1,    0,   -5,    0,    4;
   0,    4,    0,  -12,    0,    8;
  -1,    0,   13,    0,  -28,    0,   16;
   0,   -6,    0,   38,    0,  -64,    0,   32;
   1,    0,  -25,    0,  104,    0, -144,    0,   64; (End)
		

Crossrefs

Formula

T(n,k) = 2*T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Dec 07 2011

Extensions

Definition corrected by Philippe Deléham, Dec 07 2011
Showing 1-3 of 3 results.