A052156
Number of compositions of n into 2*j-1 kinds of j's for all j>=1.
Original entry on oeis.org
1, 1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
Offset: 0
1 + x + 4*x^2 + 12*x^3 + 36*x^4 + 108*x^5 + 324*x^6 + 972*x^7 + 2916*x^8 + ...
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
- P. Ribenhoim, The Little Book of Big Primes, Springer-Verlag, N.Y., 1991, p. 53.
-
CoefficientList[Series[(1 - x)^2/(1 - 3 x), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
-
{a(n) = local(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (-4*k + 9) * A[k-1] + 3 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
A055842
Expansion of (1-x)^2/(1-5*x).
Original entry on oeis.org
1, 3, 16, 80, 400, 2000, 10000, 50000, 250000, 1250000, 6250000, 31250000, 156250000, 781250000, 3906250000, 19531250000, 97656250000, 488281250000, 2441406250000, 12207031250000, 61035156250000, 305175781250000, 1525878906250000, 7629394531250000
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
Concatenation([1,3], List([2..30], n-> 16*5^(n-2) )); # G. C. Greubel, Jan 21 2020
-
[1,3] cat [16*5^(n-2): n in [2..30]]; // G. C. Greubel, Jan 21 2020
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1-x)^2/(1-5*x))); // Marius A. Burtea, Jan 21 2020
-
seq( `if`(n<2, 2*n+1, 16*5^(n-2)), n=0..30); # G. C. Greubel, Jan 21 2020
-
Join[{1,3},16 5^(Range[2,30]-2)] (* Harvey P. Dale, Apr 03 2013 *)
-
Vec((1-x)^2/(1-5*x) + O(x^30)) \\ Altug Alkan, Mar 13 2016
-
[1,3]+[16*5^(n-2) for n in (2..30)] # G. C. Greubel, Jan 21 2020
A055841
Number of compositions of n into 3*j-1 kinds of j's for all j >= 1.
Original entry on oeis.org
1, 2, 9, 36, 144, 576, 2304, 9216, 36864, 147456, 589824, 2359296, 9437184, 37748736, 150994944, 603979776, 2415919104, 9663676416, 38654705664, 154618822656, 618475290624, 2473901162496, 9895604649984, 39582418599936, 158329674399744, 633318697598976, 2533274790395904, 10133099161583616, 40532396646334464, 162129586585337856, 648518346341351424
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
A055270
a(n) = 7*a(n-1) + (-1)^n * binomial(2,2-n) with a(-1)=0.
Original entry on oeis.org
1, 5, 36, 252, 1764, 12348, 86436, 605052, 4235364, 29647548, 207532836, 1452729852, 10169108964, 71183762748, 498286339236, 3488004374652, 24416030622564, 170912214357948, 1196385500505636, 8374698503539452, 58622889524776164, 410360226673433148, 2872521586714032036
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
-
[1,5] cat [36*7^(n-2): n in [2..30]]; // G. C. Greubel, Mar 16 2020
-
A055270:= n-> `if`(n<2, 4*n+1, 36*7^(n-2)); seq(A055270(n), n=0..30); # G. C. Greubel, Mar 16 2020
-
Join[{1,5},NestList[7#&,36,20]] (* Harvey P. Dale, Sep 04 2017 *)
-
[1,5]+[36*7^(n-2) for n in (2..30)] # G. C. Greubel, Mar 16 2020
A201509
Irregular triangle read by rows: T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = 0, T(n,0) = T(1,1) = 1 and T(n,k) = 0 if k < 0 or if n < k.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 1, 8, 12, 4, 16, 28, 13, 1, 32, 64, 38, 6, 64, 144, 104, 25, 1, 128, 320, 272, 88, 8, 256, 704, 688, 280, 41, 1, 512, 1536, 1696, 832, 170, 10, 1024, 3328, 4096, 2352, 620, 61, 1, 2048, 7168
Offset: 0
Triangle starts:
1 1
2 2
4 5 1
8 12 4
16 28 13 1
32 64 38 6
64 144 104 25 1
128 320 272 88 8
...
Triangle begins (full version):
0
1, 1
2, 2, 0
4, 5, 1, 0
8, 12, 4, 0, 0
16, 28, 13, 1, 0, 0
32, 64, 38, 6, 0, 0, 0
64, 144, 104, 25, 1, 0, 0, 0
128, 320, 272, 88, 8, 0, 0, 0, 0
A055995
a(n) = 64*9^(n-2), a(0)=1, a(1)=7.
Original entry on oeis.org
1, 7, 64, 576, 5184, 46656, 419904, 3779136, 34012224, 306110016, 2754990144, 24794911296, 223154201664, 2008387814976, 18075490334784, 162679413013056, 1464114717117504, 13177032454057536, 118593292086517824
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
A055996
a(n) = 81*10^(n-2), a(0)=1, a(1)=8.
Original entry on oeis.org
1, 8, 81, 810, 8100, 81000, 810000, 8100000, 81000000, 810000000, 8100000000, 81000000000, 810000000000, 8100000000000, 81000000000000, 810000000000000, 8100000000000000, 81000000000000000, 810000000000000000
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
A056002
a(n) = (10^2)*11^(n-2); a(0)=1, a(1)=9.
Original entry on oeis.org
1, 9, 100, 1100, 12100, 133100, 1464100, 16105100, 177156100, 1948717100, 21435888100, 235794769100, 2593742460100, 28531167061100, 313842837672100, 3452271214393100, 37974983358324100, 417724816941565100
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
Join[{1,9},100*11^Range[0,20]] (* or *) Join[{1,9},NestList[11#&,100,20]] (* Harvey P. Dale, May 24 2012 *)
A056116
a(n) = 121*12^(n-2), a(0)=1, a(1)=10.
Original entry on oeis.org
1, 10, 121, 1452, 17424, 209088, 2509056, 30108672, 361304064, 4335648768, 52027785216, 624333422592, 7492001071104, 89904012853248, 1078848154238976, 12946177850867712, 155354134210412544
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
concatenation([1,10], List([2..20], n-> 121*12^(n-2) )); # G. C. Greubel, Jan 18 2020
-
[1,10] cat [121*12^(n-2): n in [2..20]]; // G. C. Greubel, Jan 18 2020
-
1,10, seq( 121*12^(n-2), n=2..20); # G. C. Greubel, Jan 18 2020
-
LinearRecurrence[{12},{1,10,121},20] (* Harvey P. Dale, Oct 20 2015 *)
-
concat([1, 10], vector(20, n, 121*12^(n-1) )) \\ G. C. Greubel, Jan 18 2020
-
[1,10]+[121*12^(n-2) for n in (2..20)] # G. C. Greubel, Jan 18 2020
A055846
a(n) = 25*6^(n-2), with a(0)=1 and a(1)=4.
Original entry on oeis.org
1, 4, 25, 150, 900, 5400, 32400, 194400, 1166400, 6998400, 41990400, 251942400, 1511654400, 9069926400, 54419558400, 326517350400, 1959104102400, 11754624614400, 70527747686400, 423166486118400, 2538998916710400
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Showing 1-10 of 11 results.
Comments