cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A052156 Number of compositions of n into 2*j-1 kinds of j's for all j>=1.

Original entry on oeis.org

1, 1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
Offset: 0

Views

Author

Barry E. Williams, Jan 24 2000

Keywords

Comments

First differences of A025192, also second differences of A000244.

Examples

			1 + x + 4*x^2 + 12*x^3 + 36*x^4 + 108*x^5 + 324*x^6 + 972*x^7 + 2916*x^8 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
  • P. Ribenhoim, The Little Book of Big Primes, Springer-Verlag, N.Y., 1991, p. 53.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)^2/(1 - 3 x), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
  • PARI
    {a(n) = local(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (-4*k + 9) * A[k-1] + 3 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */

Formula

a(n) = 4*3^(n-2); n >= 2; a(0) = 1; a(1) = 1.
G.f.: (1-x)^2/(1-3*x).
G.f.: 1/(1-sum(j>=1, (2*j-1)*x^j )). - Joerg Arndt, Jul 06 2011
a(n) = 3*a(n-1)+(-1)^n*C(2, 2-n).
a(n) = A003946(n-1), n>0. - R. J. Mathar, Oct 13 2008
a(n) = (-4*n + 9) * a(n-1) + 3 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
a(n) = Sum_{k, 0<=k<=n} A201780(n,k). - Philippe Deléham, Dec 05 2011

Extensions

New name from Joerg Arndt, Jul 06 2011

A055842 Expansion of (1-x)^2/(1-5*x).

Original entry on oeis.org

1, 3, 16, 80, 400, 2000, 10000, 50000, 250000, 1250000, 6250000, 31250000, 156250000, 781250000, 3906250000, 19531250000, 97656250000, 488281250000, 2441406250000, 12207031250000, 61035156250000, 305175781250000, 1525878906250000, 7629394531250000
Offset: 0

Views

Author

Barry E. Williams, May 30 2000

Keywords

Comments

First differences of A005054.
For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 4 *i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • GAP
    Concatenation([1,3], List([2..30], n-> 16*5^(n-2) )); # G. C. Greubel, Jan 21 2020
  • Magma
    [1,3] cat [16*5^(n-2): n in [2..30]]; // G. C. Greubel, Jan 21 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1-x)^2/(1-5*x))); // Marius A. Burtea, Jan 21 2020
    
  • Maple
    seq( `if`(n<2, 2*n+1, 16*5^(n-2)), n=0..30); # G. C. Greubel, Jan 21 2020
  • Mathematica
    Join[{1,3},16 5^(Range[2,30]-2)] (* Harvey P. Dale, Apr 03 2013 *)
  • PARI
    Vec((1-x)^2/(1-5*x) + O(x^30)) \\ Altug Alkan, Mar 13 2016
    
  • Sage
    [1,3]+[16*5^(n-2) for n in (2..30)] # G. C. Greubel, Jan 21 2020
    

Formula

a(n) = 16*5^(n-2), a(0)=1, a(1)=3.
a(n) = 5*a(n-1) + (-1)^n*binomial(2,2-n).
G.f.: (1-x)^2/(1-5*x).
a(n) = Sum_{k=0..n} A201780(n,k)*3^k. - Philippe Deléham, Dec 05 2011
E.g.f.: (9 - 5*x + 16*exp(x))/25. - G. C. Greubel, Jan 21 2020

A055841 Number of compositions of n into 3*j-1 kinds of j's for all j >= 1.

Original entry on oeis.org

1, 2, 9, 36, 144, 576, 2304, 9216, 36864, 147456, 589824, 2359296, 9437184, 37748736, 150994944, 603979776, 2415919104, 9663676416, 38654705664, 154618822656, 618475290624, 2473901162496, 9895604649984, 39582418599936, 158329674399744, 633318697598976, 2533274790395904, 10133099161583616, 40532396646334464, 162129586585337856, 648518346341351424
Offset: 0

Views

Author

Barry E. Williams, May 30 2000

Keywords

Comments

First differences of A002001.
For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4} we have f(x_1) <> y_1 and f(x_2) <> y_2. - Milan Janjic, Apr 19 2007
Convolved with [1, 2, 3, ...] = powers of 4: [1, 4, 16, 64, ...]. - Gary W. Adamson, Jun 04 2009
a(n) is the number of generalized compositions of n when there are 3 *i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A000302 and A002001.
Essentially the same as A002063.

Programs

Formula

a(n) = 9*4^(n-2), a(0)=1, a(1)=2.
a(0)=1, a(1)=2, a(3)=9, a(n+1)=4*a(n) for n >= 3.
G.f.: (1-x)^2/(1-4*x).
G.f.: 1/(1 - Sum_{j>=1} (3*j-1)*x^j). - Joerg Arndt, Jul 06 2011
a(n) = 4*a(n-1) + (-1)^n*C(2,2-n).
a(n) = Sum_{k=0..n} A201780(n,k)*2^k. - Philippe Deléham, Dec 05 2011

Extensions

New name from Joerg Arndt, Jul 06 2011

A055270 a(n) = 7*a(n-1) + (-1)^n * binomial(2,2-n) with a(-1)=0.

Original entry on oeis.org

1, 5, 36, 252, 1764, 12348, 86436, 605052, 4235364, 29647548, 207532836, 1452729852, 10169108964, 71183762748, 498286339236, 3488004374652, 24416030622564, 170912214357948, 1196385500505636, 8374698503539452, 58622889524776164, 410360226673433148, 2872521586714032036
Offset: 0

Views

Author

Barry E. Williams, May 10 2000

Keywords

Comments

For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7} we have f(x_1) <> y_1 and f(x_2) <> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 6*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A055272 (first differences of 7^n (A000420)).

Programs

Formula

a(n) = 6^2 * 7^(n-2), n >= 2 with a(0)=1, a(1)=5.
G.f.: (1-x)^2/(1-7*x).
a(n) = Sum_{k=0..n} A201780(n,k)*5^k. - Philippe Deléham, Dec 05 2011
E.g.f.: (13 - 7*x + 36*exp(7*x))/49. - G. C. Greubel, Mar 16 2020

Extensions

Terms a(20) onward added by G. C. Greubel, Mar 16 2020

A201509 Irregular triangle read by rows: T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = 0, T(n,0) = T(1,1) = 1 and T(n,k) = 0 if k < 0 or if n < k.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 1, 8, 12, 4, 16, 28, 13, 1, 32, 64, 38, 6, 64, 144, 104, 25, 1, 128, 320, 272, 88, 8, 256, 704, 688, 280, 41, 1, 512, 1536, 1696, 832, 170, 10, 1024, 3328, 4096, 2352, 620, 61, 1, 2048, 7168
Offset: 0

Views

Author

Paul Curtz, Dec 02 2011

Keywords

Comments

This is the pseudo-triangle whose successive lines are of the type T(n,0), T(n,1)+T(n-1,0), T(n,2)+T(n-1,1), ... T(n,k)+T(n-1,k-1), without 0's, with T=A201701. [e-mail, Philippe Deléham, Dec 04 2011]

Examples

			Triangle starts:
    1   1
    2   2
    4   5   1
    8  12   4
   16  28  13  1
   32  64  38  6
   64 144 104 25 1
  128 320 272 88 8
  ...
Triangle begins (full version):
    0
    1,   1
    2,   2,   0
    4,   5,   1,  0
    8,  12,   4,  0, 0
   16,  28,  13,  1, 0, 0
   32,  64,  38,  6, 0, 0, 0
   64, 144, 104, 25, 1, 0, 0, 0
  128, 320, 272, 88, 8, 0, 0, 0, 0
		

Crossrefs

Cf. A052542 (row sums).

Formula

T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = 0, T(n,0) = T(1,1) = 1 and T(n,k) = 0 if k < 0 or if n < k. - Philippe Deléham, Dec 05 2011
The n-th row polynomial appears to equal Sum_{k = 1..floor((n+1)/2)} binomial(n,2*k-1)*(1+t)^k. Cf. A034867. - Peter Bala, Sep 10 2012
Aside from the first two rows below, the signed coefficients appear in the expansion (b*x - 1)^2 / (a*b*x^2 - 2a*x + 1) = 1 + (2 a - 2 b)x + (4 a^2 - 5 a b + b^2)x^2 + (8 a^3 - 12 a^2b + 4 ab^2)x^3 + ..., the reciprocal of the derivative of x*(1-a*x) / (1-b*x). This is related to A263633 via the expansion (a*b*x^2 - 2a*x + 1) / (b*x - 1)^2 = 1 + (b - a) (2x + 3b x^2 + 4b^2 x^3 + ...). See also A201780. - Tom Copeland, Oct 30 2023

Extensions

Edited and new name using Philippe Deléham's formula, Joerg Arndt, Dec 13 2023

A055995 a(n) = 64*9^(n-2), a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 64, 576, 5184, 46656, 419904, 3779136, 34012224, 306110016, 2754990144, 24794911296, 223154201664, 2008387814976, 18075490334784, 162679413013056, 1464114717117504, 13177032454057536, 118593292086517824
Offset: 0

Views

Author

Barry E. Williams, Jun 04 2000

Keywords

Comments

For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 8*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Second differences of 9^n (A001019). Cf. A055275.

Formula

a(n) = 9a(n-1) + ((-1)^n)*C(2, 2-n).
G.f.: (1-x)^2/(1-9x).
a(n) = Sum_{k, 0<=k<=n} A201780(n,k)*7^k. - Philippe Deléham, Dec 05 2011

A055996 a(n) = 81*10^(n-2), a(0)=1, a(1)=8.

Original entry on oeis.org

1, 8, 81, 810, 8100, 81000, 810000, 8100000, 81000000, 810000000, 8100000000, 81000000000, 810000000000, 8100000000000, 81000000000000, 810000000000000, 8100000000000000, 81000000000000000, 810000000000000000
Offset: 0

Views

Author

Barry E. Williams, Jun 04 2000

Keywords

Comments

For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9,10} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9,10} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 9*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Second differences of 10^n (A011557). Cf. A052268.

Programs

  • Mathematica
    Join[{1,8},NestList[10#&,81,20]] (* Harvey P. Dale, Nov 20 2015 *)

Formula

a(n)=10a(n-1)+[(-1)^n]*C(2, 2-n). G.f.(x)=(1-x)^2/(1-10x).
a(n) = Sum_{k, 0<=k<=n} A201780(n,k)*8^k. - Philippe Deléham, Dec 05 2011

A056002 a(n) = (10^2)*11^(n-2); a(0)=1, a(1)=9.

Original entry on oeis.org

1, 9, 100, 1100, 12100, 133100, 1464100, 16105100, 177156100, 1948717100, 21435888100, 235794769100, 2593742460100, 28531167061100, 313842837672100, 3452271214393100, 37974983358324100, 417724816941565100
Offset: 0

Views

Author

Barry E. Williams, Jun 18 2000

Keywords

Comments

For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9,10,11} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9,10,11} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 10*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A001020.

Programs

  • Mathematica
    Join[{1,9},100*11^Range[0,20]] (* or *) Join[{1,9},NestList[11#&,100,20]] (* Harvey P. Dale, May 24 2012 *)

Formula

a(n)=11a(n-1)+[(-1)^n]*C(2, 2-n). G.f.(x)=(1-x)^2/(1-11x).
a(n) = Sum_{k, 0<=k<=n} A201780(n,k)*9^k. - Philippe Deléham, Dec 05 2011

Extensions

More terms from James Sellers, Jul 04 2000

A056116 a(n) = 121*12^(n-2), a(0)=1, a(1)=10.

Original entry on oeis.org

1, 10, 121, 1452, 17424, 209088, 2509056, 30108672, 361304064, 4335648768, 52027785216, 624333422592, 7492001071104, 89904012853248, 1078848154238976, 12946177850867712, 155354134210412544
Offset: 0

Views

Author

Barry E. Williams, Jul 04 2000

Keywords

Comments

For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9,10,11,12} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9,10,11,12} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 11*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • GAP
    concatenation([1,10], List([2..20], n-> 121*12^(n-2) )); # G. C. Greubel, Jan 18 2020
  • Magma
    [1,10] cat [121*12^(n-2): n in [2..20]]; // G. C. Greubel, Jan 18 2020
    
  • Maple
    1,10, seq( 121*12^(n-2), n=2..20); # G. C. Greubel, Jan 18 2020
  • Mathematica
    LinearRecurrence[{12},{1,10,121},20] (* Harvey P. Dale, Oct 20 2015 *)
  • PARI
    concat([1, 10], vector(20, n, 121*12^(n-1) )) \\ G. C. Greubel, Jan 18 2020
    
  • Sage
    [1,10]+[121*12^(n-2) for n in (2..20)] # G. C. Greubel, Jan 18 2020
    

Formula

a(n) = 12*a(n-1) + (-1)^n*C(2, 2-n).
G.f.: (1-x)^2/(1-12*x).
a(n) = Sum_{k=0..n} A201780(n,k)*10^k. - Philippe Deléham, Dec 05 2011
E.g.f.: (23 - 12*x + 121*exp(12*x))/144. - G. C. Greubel, Jan 18 2020

Extensions

More terms from James Sellers, Jul 04 2000

A055846 a(n) = 25*6^(n-2), with a(0)=1 and a(1)=4.

Original entry on oeis.org

1, 4, 25, 150, 900, 5400, 32400, 194400, 1166400, 6998400, 41990400, 251942400, 1511654400, 9069926400, 54419558400, 326517350400, 1959104102400, 11754624614400, 70527747686400, 423166486118400, 2538998916710400
Offset: 0

Views

Author

Barry E. Williams, Jun 03 2000

Keywords

Comments

For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 5*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

First differences of A052934. Cf. A000400.

Programs

  • Mathematica
    LinearRecurrence[{6},{1,4,25},30] (* Harvey P. Dale, May 25 2023 *)

Formula

a(n) = 25*6^(n-2), a(0)=1, a(1)=4. a(n) = 6a(n-1) + ((-1)^n)*binomial(2, 2-n); g.f.(x)=(1-x)^2/(1-6x).
a(n) = Sum_{k, 0<=k<=n} A201780(n,k)*4^k. - Philippe Deléham, Dec 05 2011

Extensions

More terms from James Sellers, Jun 05 2000
Showing 1-10 of 11 results. Next