cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002063 a(n) = 9*4^n.

Original entry on oeis.org

9, 36, 144, 576, 2304, 9216, 36864, 147456, 589824, 2359296, 9437184, 37748736, 150994944, 603979776, 2415919104, 9663676416, 38654705664, 154618822656, 618475290624, 2473901162496, 9895604649984, 39582418599936, 158329674399744, 633318697598976
Offset: 0

Views

Author

Keywords

Comments

a(n) is twice the area of the trapezoid created by the four points (2^n,2^(n+1)), (2^(n+1), 2^n), (2^(n+1), 2^(n+2)), (2^(n+2), 2^(n+1)). - J. M. Bergot, May 23 2014
These are squares that can be expressed as sum of exactly two distinct powers of two. For instance, a(4) = 9*4^4 = 2304 = 2^11 + 2^8 . It is conjectured that these are the only squares with this characteristic (tested on squares up to (10^7)^2). - Andres Cicuttin, Apr 23 2016
Conjecture is true. It is equivalent to prove that the Diophantine equation m^2 = 2^k*(1+2^h), where h>0, has solutions only when h=3. Dividing by 2^k we must obtain an odd square on the left, since 1+2^h is odd, so we can write (2*r+1)^2 = 1+2^h. Expanding, we have 4*r*(r+1) = 2^h, from which it follows that r must be equal to 1 and thus h=3, since r and r+1 must be powers of 2. - Giovanni Resta, Jul 27 2017

Crossrefs

Essentially the same as A055841. First differences of A002001.
Cf. A000302.

Programs

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 4*a(n-1), n > 0; a(0)=9.
G.f.: 9/(1-4*x). (End)
a(n) = 9*A000302(n). - Michel Marcus, Apr 23 2016
E.g.f.: 9*exp(4*x). - Ilya Gutkovskiy, Apr 23 2016
a(n) = 2^(2*n+3) + 2^(2*n). - Andres Cicuttin, Apr 26 2016
a(n) = A004171(n+1) + A000302(n). - Zhandos Mambetaliyev, Nov 19 2016

A201780 Riordan array ((1-x)^2/(1-2x), x/(1-2x)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 5, 4, 1, 4, 12, 13, 6, 1, 8, 28, 38, 25, 8, 1, 16, 64, 104, 88, 41, 10, 1, 32, 144, 272, 280, 170, 61, 12, 1, 64, 320, 688, 832, 620, 292, 85, 14, 1, 128, 704, 1696, 2352, 2072, 1204, 462, 113, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2011

Keywords

Comments

Diagonals ascending: 1, 0, 1, 1, 2, 2, 4, 5, 1, 8, 12, 4, ... (see A201509).

Examples

			Triangle begins:
  1;
  0,  1;
  1,  2,  1;
  2,  5,  4,  1;
  4, 12, 13,  6,  1;
  8, 28, 38, 25,  8,  1;
		

Crossrefs

Row sums: A052156

Programs

  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x)^2/(1-(y+2)*x) + O[x]^10, x] // Flatten (* Jean-François Alcover, Nov 03 2018 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) with T(0,0) = 0, T(1,0) = 0, T(2,0) = 0 and T(n,k)= 0 if k < 0 or if n < k.
Sum_{k=0..n} T(n,k)*x^k = A154955(n+1), A034008(n), A052156(n), A055841(n), A055842(n), A055846(n), A055270(n), A055847(n), A055995(n), A055996(n), A056002(n), A056116(n) for x = -1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)^2/(1-(y+2)*x).

A056120 a(n) = (3^3)*4^(n-3) with a(0)=1, a(1)=1 and a(2)=7.

Original entry on oeis.org

1, 1, 7, 27, 108, 432, 1728, 6912, 27648, 110592, 442368, 1769472, 7077888, 28311552, 113246208, 452984832, 1811939328, 7247757312, 28991029248, 115964116992, 463856467968, 1855425871872
Offset: 0

Views

Author

Barry E. Williams, Jul 05 2000

Keywords

Comments

For n>=3, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4} such that for fixed, different x_1, x_2, x_3 in {1,2,...,n} and fixed y_1, y_2, y_3 in {1,2,3,4} we have f(x_i)<>y_i, (i=1,2,...,n). - Milan Janjic, May 13 2007

Crossrefs

Cf. A055841.
First differences of A002063.

Programs

  • GAP
    Concatenation([1,1,7], List([3..25], n-> 27*4^(n-3) )); # G. C. Greubel, Jan 18 2020
  • Magma
    [1,1,7] cat [27*4^(n-3): n in [3..25]]; // G. C. Greubel, Jan 18 2020
    
  • Maple
    1,1,7, seq( 27*4^(n-3), n=3..25); # G. C. Greubel, Jan 18 2020
  • Mathematica
    Table[If[n<2, 1, If[n==2, 7, 27*4^(n-3)]], {n,0,25}] (* G. C. Greubel, Jan 18 2020 *)
  • PARI
    vector(26, n, if(n<2, 1, if(n==2, 7, 27*4^(n-3))) ) \\ G. C. Greubel, Jan 18 2020
    
  • Sage
    [1,1,7]+[27*4^(n-3) for n in (3..25)] # G. C. Greubel, Jan 18 2020
    

Formula

a(n) = 4*a(n-1) + (-1)^n*binomial(3, 3-n).
G.f.: (1-x)^3/(1-4*x).
E.g.f.: (37 - 44*x + 8*x^2 + 27*exp(4*x))/64. - G. C. Greubel, Jan 18 2020

Extensions

a(21) corrected by R. J. Mathar, Dec 03 2014

A143787 Number of compositions of n into floor((3*j)/2) kinds of j's for all j>=1.

Original entry on oeis.org

1, 1, 4, 11, 33, 95, 278, 808, 2355, 6856, 19969, 58151, 169353, 493190, 1436288, 4182793, 12181260, 35474611, 103310209, 300862991, 876181998, 2551642760, 7430968523, 21640683328, 63022629465, 183536340391, 534499885849, 1556586163406, 4533135643968, 13201529892305, 38445880553108, 111963215139163, 326062542045345
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2011

Keywords

Comments

The g.f. for compositions of k_1 kinds of 1's, k_2 kinds of 2's, ..., k_j kinds of j's, ... is 1/(1-sum(j>=1, k_j * x^j )).

Crossrefs

Cf. A121907 (floor((3*j-1)/2)), A055841 (3*j-1), A052156 (2*j-1), A006053 (floor(j/2)), A176848 (floor(j/3)).

Programs

  • Mathematica
    LinearRecurrence[{2,3,-1},{1,1,4,11},50] (* Paolo Xausa, Nov 14 2023 *)

Formula

a(n) = +2*a(n-1) +3*a(n-2) -1*a(n-3).
G.f.: ((1-x)^2*(1+x))/(1-2*x-3*x^2+x^3).
G.f.: 1/(1-sum(j>=1, floor((3*j)/2)*x^j )).

A176848 Number of compositions of n into floor(j/3) kinds of j's for all j>=1.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 4, 5, 10, 15, 21, 36, 56, 83, 134, 210, 320, 505, 791, 1221, 1911, 2988, 4639, 7240, 11305, 17595, 27436, 42806, 66691, 103968, 162144, 252720, 393965, 614285, 957581, 1492791, 2327396, 3628273, 5656274, 8818275, 13747425, 21431700, 33411976, 52088551, 81204526, 126596778, 197361904, 307682405
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2011

Keywords

Comments

The g.f. for compositions of k_1 kinds of 1's, k_2 kinds of 2's, ..., k_j kinds of j's, ... is 1/(1-sum(j>=1, k_j * x^j )).

Crossrefs

Cf. A121907 (floor((3*j-1)/2)), A055841 (3*j-1), A052156 (2*j-1), A006053 (floor(j/2)), A143787 (floor((3*j)/2)).

Programs

  • PARI
    N=66; x='x+O('x^N) /* that many terms */
    gf= 1/(1-sum(j=1,N, floor(j/3)*x^j ))
    Vec(gf) /* show terms */

Formula

G.f.: 1/(1-sum(j>=1, floor(j/3)*x^j )).
Conjectural g.f.: (x-1)^2*(x^2+x+1) / (x^4-2*x^3-x+1). - Colin Barker, May 15 2013
G.f.: 1 + x^3*Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+1 + 2*x^2 - x^3)/( x*(4*k+3 + 2*x^2 - x^3 ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 11 2013

A166976 Array of A002450 in the top row and higher-order differences in subsequent rows, read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 9, 12, 16, 21, 27, 36, 48, 64, 85, 81, 108, 144, 192, 256, 341, 243, 324, 432, 576, 768, 1024, 1365, 729, 972, 1296, 1728, 2304, 3072, 4096, 5461, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 21845, 6561
Offset: 0

Views

Author

Paul Curtz, Oct 26 2009

Keywords

Examples

			The array starts:
0,   1,   5,  21,  85, 341,1365,5461,21845,87381,349525,    A002450
1,   4,  16,  64, 256,1024,4096,16384,65536,262144,1048576, A000302
3,  12,  48, 192, 768,3072,12288,49152,196608,786432,       A002001, A164346, A110594
9,  36, 144, 576,2304,9216,36864,147456                     A002063, A055841
		

Programs

  • Maple
    A002450 := proc(n) (4^n-1)/3 ; end proc:
    A166976 := proc(n,k) option remember; if n = 0 then A002450(k) else procname(n-1,k+1)-procname(n-1,k) ; end if; end proc: # R. J. Mathar, Jul 02 2011

Formula

T(0,k) = A002450(k). T(n,k) = T(n-1,k+1) - T(n-1,k), n > 0.
Showing 1-6 of 6 results.