Original entry on oeis.org
9, 36, 144, 576, 2304, 9216, 36864, 147456, 589824, 2359296, 9437184, 37748736, 150994944, 603979776, 2415919104, 9663676416, 38654705664, 154618822656, 618475290624, 2473901162496, 9895604649984, 39582418599936, 158329674399744, 633318697598976
Offset: 0
A201780
Riordan array ((1-x)^2/(1-2x), x/(1-2x)).
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 2, 5, 4, 1, 4, 12, 13, 6, 1, 8, 28, 38, 25, 8, 1, 16, 64, 104, 88, 41, 10, 1, 32, 144, 272, 280, 170, 61, 12, 1, 64, 320, 688, 832, 620, 292, 85, 14, 1, 128, 704, 1696, 2352, 2072, 1204, 462, 113, 16, 1
Offset: 0
Triangle begins:
1;
0, 1;
1, 2, 1;
2, 5, 4, 1;
4, 12, 13, 6, 1;
8, 28, 38, 25, 8, 1;
- Benjamin Braun, W. K. Hough, Matching and Independence Complexes Related to Small Grids, arXiv preprint arXiv:1606.01204 [math.CO], 2016.
- Wesley K. Hough, On Independence, Matching, and Homomorphism Complexes, (2017), Theses and Dissertations--Mathematics, 42.
-
CoefficientList[#, y]& /@ CoefficientList[(1-x)^2/(1-(y+2)*x) + O[x]^10, x] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
A056120
a(n) = (3^3)*4^(n-3) with a(0)=1, a(1)=1 and a(2)=7.
Original entry on oeis.org
1, 1, 7, 27, 108, 432, 1728, 6912, 27648, 110592, 442368, 1769472, 7077888, 28311552, 113246208, 452984832, 1811939328, 7247757312, 28991029248, 115964116992, 463856467968, 1855425871872
Offset: 0
-
Concatenation([1,1,7], List([3..25], n-> 27*4^(n-3) )); # G. C. Greubel, Jan 18 2020
-
[1,1,7] cat [27*4^(n-3): n in [3..25]]; // G. C. Greubel, Jan 18 2020
-
1,1,7, seq( 27*4^(n-3), n=3..25); # G. C. Greubel, Jan 18 2020
-
Table[If[n<2, 1, If[n==2, 7, 27*4^(n-3)]], {n,0,25}] (* G. C. Greubel, Jan 18 2020 *)
-
vector(26, n, if(n<2, 1, if(n==2, 7, 27*4^(n-3))) ) \\ G. C. Greubel, Jan 18 2020
-
[1,1,7]+[27*4^(n-3) for n in (3..25)] # G. C. Greubel, Jan 18 2020
A143787
Number of compositions of n into floor((3*j)/2) kinds of j's for all j>=1.
Original entry on oeis.org
1, 1, 4, 11, 33, 95, 278, 808, 2355, 6856, 19969, 58151, 169353, 493190, 1436288, 4182793, 12181260, 35474611, 103310209, 300862991, 876181998, 2551642760, 7430968523, 21640683328, 63022629465, 183536340391, 534499885849, 1556586163406, 4533135643968, 13201529892305, 38445880553108, 111963215139163, 326062542045345
Offset: 0
-
LinearRecurrence[{2,3,-1},{1,1,4,11},50] (* Paolo Xausa, Nov 14 2023 *)
A176848
Number of compositions of n into floor(j/3) kinds of j's for all j>=1.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 3, 4, 5, 10, 15, 21, 36, 56, 83, 134, 210, 320, 505, 791, 1221, 1911, 2988, 4639, 7240, 11305, 17595, 27436, 42806, 66691, 103968, 162144, 252720, 393965, 614285, 957581, 1492791, 2327396, 3628273, 5656274, 8818275, 13747425, 21431700, 33411976, 52088551, 81204526, 126596778, 197361904, 307682405
Offset: 0
- Jarib R. Acosta, Yadira Caicedo, Juan P. Poveda, José L. Ramírez, Mark Shattuck, Some New Restricted n-Color Composition Functions, J. Int. Seq., Vol. 22 (2019), Article 19.6.4.
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 2, -1).
A166976
Array of A002450 in the top row and higher-order differences in subsequent rows, read by antidiagonals.
Original entry on oeis.org
0, 1, 1, 3, 4, 5, 9, 12, 16, 21, 27, 36, 48, 64, 85, 81, 108, 144, 192, 256, 341, 243, 324, 432, 576, 768, 1024, 1365, 729, 972, 1296, 1728, 2304, 3072, 4096, 5461, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 21845, 6561
Offset: 0
The array starts:
0, 1, 5, 21, 85, 341,1365,5461,21845,87381,349525, A002450
1, 4, 16, 64, 256,1024,4096,16384,65536,262144,1048576, A000302
3, 12, 48, 192, 768,3072,12288,49152,196608,786432, A002001, A164346, A110594
9, 36, 144, 576,2304,9216,36864,147456 A002063, A055841
-
A002450 := proc(n) (4^n-1)/3 ; end proc:
A166976 := proc(n,k) option remember; if n = 0 then A002450(k) else procname(n-1,k+1)-procname(n-1,k) ; end if; end proc: # R. J. Mathar, Jul 02 2011
Showing 1-6 of 6 results.
Comments