cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201780 Riordan array ((1-x)^2/(1-2x), x/(1-2x)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 5, 4, 1, 4, 12, 13, 6, 1, 8, 28, 38, 25, 8, 1, 16, 64, 104, 88, 41, 10, 1, 32, 144, 272, 280, 170, 61, 12, 1, 64, 320, 688, 832, 620, 292, 85, 14, 1, 128, 704, 1696, 2352, 2072, 1204, 462, 113, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2011

Keywords

Comments

Diagonals ascending: 1, 0, 1, 1, 2, 2, 4, 5, 1, 8, 12, 4, ... (see A201509).

Examples

			Triangle begins:
  1;
  0,  1;
  1,  2,  1;
  2,  5,  4,  1;
  4, 12, 13,  6,  1;
  8, 28, 38, 25,  8,  1;
		

Crossrefs

Row sums: A052156

Programs

  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x)^2/(1-(y+2)*x) + O[x]^10, x] // Flatten (* Jean-François Alcover, Nov 03 2018 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) with T(0,0) = 0, T(1,0) = 0, T(2,0) = 0 and T(n,k)= 0 if k < 0 or if n < k.
Sum_{k=0..n} T(n,k)*x^k = A154955(n+1), A034008(n), A052156(n), A055841(n), A055842(n), A055846(n), A055270(n), A055847(n), A055995(n), A055996(n), A056002(n), A056116(n) for x = -1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)^2/(1-(y+2)*x).

A055272 First differences of 7^n (A000420).

Original entry on oeis.org

1, 6, 42, 294, 2058, 14406, 100842, 705894, 4941258, 34588806, 242121642, 1694851494, 11863960458, 83047723206, 581334062442, 4069338437094, 28485369059658, 199397583417606, 1395783083923242, 9770481587462694
Offset: 0

Views

Author

Barry E. Williams, May 28 2000

Keywords

Comments

Partial sum of A055270.
Conjecture in "Introduction à la théorie des nombres" by J. M. Deconinck and Armel Mercier: this is the period length of the fraction 1/7^n. For example 1/7^2=0.0204081632653061224489795918367346938775510204....with a period of 42 digits =6*7=a(2). The period of 1/7^3 has exactly 294=a(3) digits. - Benoit Cloitre, Feb 02 2002
Also phi(7^n), where phi is Euler's totient function. - Alonso del Arte, May 08 2006
For n>=1, a(n) is equal to the number of functions f:{1,2...,n}->{1,2,3,4,5,6,7} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4,5,6,7} we have f(x)<>y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
a(n) is the number of compositions of n when there are 6 types of each part. - Milan Janjic, Aug 13 2010
Apart from the first term, number of monic squarefree polynomials over F_7 of degree n. - Charles R Greathouse IV, Feb 07 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Jean-Marie De Koninck and Armel Mercier, Introduction à la théorie des nombres, Collection Universitaire de Mathématiques, Modulo, 1994.

Crossrefs

Programs

Formula

G.f.: (1-x)/(1-7*x).
G.f.: 1/( 1 - 6*Sum(k>=1, x^k) ).
a(n) = 6*7^(n-1), a(0)=1.
E.g.f.: (1 + 6*exp(7*x))/7. - G. C. Greubel, Mar 16 2020
Showing 1-2 of 2 results.