cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A226205 a(n) = F(n)^2 - F(n-1)^2 or F(n+1) * F(n-2) where F(n) = A000045(n), the Fibonacci numbers.

Original entry on oeis.org

1, 0, 3, 5, 16, 39, 105, 272, 715, 1869, 4896, 12815, 33553, 87840, 229971, 602069, 1576240, 4126647, 10803705, 28284464, 74049691, 193864605, 507544128, 1328767775, 3478759201, 9107509824, 23843770275, 62423800997, 163427632720, 427859097159, 1120149658761
Offset: 1

Views

Author

Michael Somos, Jun 06 2013

Keywords

Comments

A001519(n)^2 = A079472(n)^2 + a(n)^2 and (A001519(n), A079472(n), a(n)) is a Pythagorean triple.
INVERT transform is A052156. PSUM transform is A007598. SUMADJ transform is A088305. BINOMIAL transform is A039717. BINOMIAL transform with 0 prepended is A112091 with 0 prepended. BINOMIAL transform inverse is A084179(n+1).
In general, the difference between squares of two consecutive terms of a second order linear recurrence having a signature of (c,d) will be a third order recurrence with signature (c^2+d,(c^2+d)*d,-d^3). - Gary Detlefs, Mar 13 2025

Examples

			G.f. = x + 3*x^3 + 5*x^4 + 16*x^5 + 39*x^6 + 105*x^7 + 272*x^8 + 715*x^9 + ...
		

Crossrefs

Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n listed in A264080.
Cf. A260259: numbers of the form F(n)*F(n+1)-(-1)^n. - Bruno Berselli, Nov 02 2015

Programs

  • Magma
    [Fibonacci(n)^2-Fibonacci(n-1)^2: n in [1..40]]; // Vincenzo Librandi, Jun 18 2014
    
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <-1|2|2>>^n. <<1,0,3>>)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 28 2016
  • Mathematica
    a[ n_] := Fibonacci[n + 1] Fibonacci[n - 2]; (* Michael Somos, Jun 17 2014 *)
    CoefficientList[Series[(1 - x)^2/((1 + x) (1 - 3 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
  • PARI
    {a(n) = fibonacci( n + 1) * fibonacci( n - 2)};
    
  • PARI
    a(n) = round(2^(-1-n)*(-(-1)^n*2^(3+n)-(3-sqrt(5))^n*(1+sqrt(5))+(-1+sqrt(5))*(3+sqrt(5))^n)/5) \\ Colin Barker, Sep 28 2016
    
  • PARI
    lista(nn) = {my(p = (3*x-1)/(x^3-2*x^2-2*x+1)); for (n=1, nn, p = deriv(p, x); print1(subst(p, x, 0)/n!, ", "); ); } \\ Michel Marcus, May 22 2018

Formula

G.f.: x * (1 - x)^2 / ((1 + x) * (1 -3*x + x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = - A121646(n).
a(n) = -a(1-n) for all n in Z.
a(n) = A121801(n+1) / 2. - Michael Somos, Jun 17 2014
a(n) = a(n-1) + A000045(n-1)^2 - 2*(-1)^n, for n>1. - Alexander Samokrutov, Sep 07 2015
a(n) = F(n-1)*F(n) - (-1)^n. - Bruno Berselli, Oct 30 2015
a(n) = 2^(-1-n)*(-(-1)^n*2^(3+n)-(3-sqrt(5))^n*(1+sqrt(5))+(-1+sqrt(5))*(3+sqrt(5))^n)/5. - Colin Barker, Sep 28 2016
From Amiram Eldar, Oct 06 2020: (Start)
Sum_{n>=3} 1/a(n) = (1/2) * A290565 - 1/4.
Sum_{n>=3} (-1)^(n+1)/a(n) = (3/2) * (1/phi - 1/2), where phi is the golden ratio (A001622). (End)

A201780 Riordan array ((1-x)^2/(1-2x), x/(1-2x)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 5, 4, 1, 4, 12, 13, 6, 1, 8, 28, 38, 25, 8, 1, 16, 64, 104, 88, 41, 10, 1, 32, 144, 272, 280, 170, 61, 12, 1, 64, 320, 688, 832, 620, 292, 85, 14, 1, 128, 704, 1696, 2352, 2072, 1204, 462, 113, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2011

Keywords

Comments

Diagonals ascending: 1, 0, 1, 1, 2, 2, 4, 5, 1, 8, 12, 4, ... (see A201509).

Examples

			Triangle begins:
  1;
  0,  1;
  1,  2,  1;
  2,  5,  4,  1;
  4, 12, 13,  6,  1;
  8, 28, 38, 25,  8,  1;
		

Crossrefs

Row sums: A052156

Programs

  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x)^2/(1-(y+2)*x) + O[x]^10, x] // Flatten (* Jean-François Alcover, Nov 03 2018 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) with T(0,0) = 0, T(1,0) = 0, T(2,0) = 0 and T(n,k)= 0 if k < 0 or if n < k.
Sum_{k=0..n} T(n,k)*x^k = A154955(n+1), A034008(n), A052156(n), A055841(n), A055842(n), A055846(n), A055270(n), A055847(n), A055995(n), A055996(n), A056002(n), A056116(n) for x = -1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)^2/(1-(y+2)*x).

A202337 Range of A062723.

Original entry on oeis.org

1, 2, 6, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924, 3389154437772, 10167463313316
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 17 2011

Keywords

Comments

Subsequence of A000792.
Apparently a(n) = A052156(n - 1) for n >= 4. - Georg Fischer, Mar 26 2019

Crossrefs

Programs

  • Haskell
    a202337 n = a202337_list !! (n-1)
    a202337_list = f a062723_list where
       f (x:xs'@(x':xs)) = if x == x' then f xs' else x : f xs'

Formula

From Colin Barker, Mar 26 2019: (Start)
G.f.: x*(1 - x - 6*x^3) / (1 - 3*x).
a(n) = 4*3^(n-3) for n>3.
a(n) = 3*a(n-1) for n>4.
(End)

A207609 Triangle of coefficients of polynomials v(n,x) jointly generated with A207608; see Formula section.

Original entry on oeis.org

1, 1, 3, 1, 8, 3, 1, 15, 17, 3, 1, 24, 54, 26, 3, 1, 35, 130, 120, 35, 3, 1, 48, 265, 398, 213, 44, 3, 1, 63, 483, 1071, 909, 333, 53, 3, 1, 80, 812, 2492, 3074, 1744, 480, 62, 3, 1, 99, 1284, 5208, 8802, 7138, 2984, 654, 71, 3, 1, 120, 1935, 10020, 22230, 24408, 14370, 4710, 855, 80, 3
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

Subtriangle of the triangle given by (1, 0, 2/3, 1/3, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012

Examples

			First five rows:
1
1...3
1...8....3
1...15...17...3
1...24...54...26...3
Triangle (1, 0, 2/3, 1/3, 0, 0, 0, ...) DELTA (0, 3, -2, 0, 0, 0, ...) begins :
1
1, 0
1, 3, 0
1, 8, 3, 0
1, 15, 17, 3, 0
1, 24, 54, 26, 3, 0
1, 35, 130, 120, 35, 3, 0
		

Crossrefs

Cf. A207608.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A207608 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A207609 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else 2*x*u(n - 1, x) + (x + 1)*v(n - 1, x)
    def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017

Formula

u(n,x)=u(n-1,x)+v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) - T(n-2,k), n>2. - Philippe Deléham, Mar 03 2012
Sum_{k, 0<=k<=n, n>=1} T(n,k)*x^k = A000012(n), A052156(n-1), A048876(n-1) for x = 0, 1, 2 respectively. - Philippe Deléham, Mar 03 2012
G.f.: -(1-x+2*x*y)*x*y/(-1+2*x+x*y+x^2*y-x^2). - R. J. Mathar, Aug 11 2015

A143787 Number of compositions of n into floor((3*j)/2) kinds of j's for all j>=1.

Original entry on oeis.org

1, 1, 4, 11, 33, 95, 278, 808, 2355, 6856, 19969, 58151, 169353, 493190, 1436288, 4182793, 12181260, 35474611, 103310209, 300862991, 876181998, 2551642760, 7430968523, 21640683328, 63022629465, 183536340391, 534499885849, 1556586163406, 4533135643968, 13201529892305, 38445880553108, 111963215139163, 326062542045345
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2011

Keywords

Comments

The g.f. for compositions of k_1 kinds of 1's, k_2 kinds of 2's, ..., k_j kinds of j's, ... is 1/(1-sum(j>=1, k_j * x^j )).

Crossrefs

Cf. A121907 (floor((3*j-1)/2)), A055841 (3*j-1), A052156 (2*j-1), A006053 (floor(j/2)), A176848 (floor(j/3)).

Programs

  • Mathematica
    LinearRecurrence[{2,3,-1},{1,1,4,11},50] (* Paolo Xausa, Nov 14 2023 *)

Formula

a(n) = +2*a(n-1) +3*a(n-2) -1*a(n-3).
G.f.: ((1-x)^2*(1+x))/(1-2*x-3*x^2+x^3).
G.f.: 1/(1-sum(j>=1, floor((3*j)/2)*x^j )).

A176848 Number of compositions of n into floor(j/3) kinds of j's for all j>=1.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 4, 5, 10, 15, 21, 36, 56, 83, 134, 210, 320, 505, 791, 1221, 1911, 2988, 4639, 7240, 11305, 17595, 27436, 42806, 66691, 103968, 162144, 252720, 393965, 614285, 957581, 1492791, 2327396, 3628273, 5656274, 8818275, 13747425, 21431700, 33411976, 52088551, 81204526, 126596778, 197361904, 307682405
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2011

Keywords

Comments

The g.f. for compositions of k_1 kinds of 1's, k_2 kinds of 2's, ..., k_j kinds of j's, ... is 1/(1-sum(j>=1, k_j * x^j )).

Crossrefs

Cf. A121907 (floor((3*j-1)/2)), A055841 (3*j-1), A052156 (2*j-1), A006053 (floor(j/2)), A143787 (floor((3*j)/2)).

Programs

  • PARI
    N=66; x='x+O('x^N) /* that many terms */
    gf= 1/(1-sum(j=1,N, floor(j/3)*x^j ))
    Vec(gf) /* show terms */

Formula

G.f.: 1/(1-sum(j>=1, floor(j/3)*x^j )).
Conjectural g.f.: (x-1)^2*(x^2+x+1) / (x^4-2*x^3-x+1). - Colin Barker, May 15 2013
G.f.: 1 + x^3*Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+1 + 2*x^2 - x^3)/( x*(4*k+3 + 2*x^2 - x^3 ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 11 2013
Showing 1-6 of 6 results.