A226205
a(n) = F(n)^2 - F(n-1)^2 or F(n+1) * F(n-2) where F(n) = A000045(n), the Fibonacci numbers.
Original entry on oeis.org
1, 0, 3, 5, 16, 39, 105, 272, 715, 1869, 4896, 12815, 33553, 87840, 229971, 602069, 1576240, 4126647, 10803705, 28284464, 74049691, 193864605, 507544128, 1328767775, 3478759201, 9107509824, 23843770275, 62423800997, 163427632720, 427859097159, 1120149658761
Offset: 1
G.f. = x + 3*x^3 + 5*x^4 + 16*x^5 + 39*x^6 + 105*x^7 + 272*x^8 + 715*x^9 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- John P. Bonomo and Montana Ferita, A Small Fib, College Math. J., 2023.
- Nurettin Irmak, Product of arbitrary Fibonacci numbers with distance 1 to Fibonomial coefficient, Turk J Math, (2017) 41: 825-828. See p. 828.
- C.-A. Laisant, Observations sur les triangles rectangles en nombres entiers et les suites de Fibonacci, Nouvelles Annales de Math. (1919, in French) Série 4, Vol. 19, 391-397.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Cf.
A001519,
A001622,
A001654,
A007598,
A033999,
A039717,
A052156,
A079472,
A084179,
A088305,
A112091,
A121646,
A290565.
Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n listed in
A264080.
-
[Fibonacci(n)^2-Fibonacci(n-1)^2: n in [1..40]]; // Vincenzo Librandi, Jun 18 2014
-
a:= n-> (<<0|1|0>, <0|0|1>, <-1|2|2>>^n. <<1,0,3>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 28 2016
-
a[ n_] := Fibonacci[n + 1] Fibonacci[n - 2]; (* Michael Somos, Jun 17 2014 *)
CoefficientList[Series[(1 - x)^2/((1 + x) (1 - 3 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
-
{a(n) = fibonacci( n + 1) * fibonacci( n - 2)};
-
a(n) = round(2^(-1-n)*(-(-1)^n*2^(3+n)-(3-sqrt(5))^n*(1+sqrt(5))+(-1+sqrt(5))*(3+sqrt(5))^n)/5) \\ Colin Barker, Sep 28 2016
-
lista(nn) = {my(p = (3*x-1)/(x^3-2*x^2-2*x+1)); for (n=1, nn, p = deriv(p, x); print1(subst(p, x, 0)/n!, ", "); ); } \\ Michel Marcus, May 22 2018
A201780
Riordan array ((1-x)^2/(1-2x), x/(1-2x)).
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 2, 5, 4, 1, 4, 12, 13, 6, 1, 8, 28, 38, 25, 8, 1, 16, 64, 104, 88, 41, 10, 1, 32, 144, 272, 280, 170, 61, 12, 1, 64, 320, 688, 832, 620, 292, 85, 14, 1, 128, 704, 1696, 2352, 2072, 1204, 462, 113, 16, 1
Offset: 0
Triangle begins:
1;
0, 1;
1, 2, 1;
2, 5, 4, 1;
4, 12, 13, 6, 1;
8, 28, 38, 25, 8, 1;
- Benjamin Braun, W. K. Hough, Matching and Independence Complexes Related to Small Grids, arXiv preprint arXiv:1606.01204 [math.CO], 2016.
- Wesley K. Hough, On Independence, Matching, and Homomorphism Complexes, (2017), Theses and Dissertations--Mathematics, 42.
-
CoefficientList[#, y]& /@ CoefficientList[(1-x)^2/(1-(y+2)*x) + O[x]^10, x] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
Original entry on oeis.org
1, 2, 6, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924, 3389154437772, 10167463313316
Offset: 1
A207609
Triangle of coefficients of polynomials v(n,x) jointly generated with A207608; see Formula section.
Original entry on oeis.org
1, 1, 3, 1, 8, 3, 1, 15, 17, 3, 1, 24, 54, 26, 3, 1, 35, 130, 120, 35, 3, 1, 48, 265, 398, 213, 44, 3, 1, 63, 483, 1071, 909, 333, 53, 3, 1, 80, 812, 2492, 3074, 1744, 480, 62, 3, 1, 99, 1284, 5208, 8802, 7138, 2984, 654, 71, 3, 1, 120, 1935, 10020, 22230, 24408, 14370, 4710, 855, 80, 3
Offset: 1
First five rows:
1
1...3
1...8....3
1...15...17...3
1...24...54...26...3
Triangle (1, 0, 2/3, 1/3, 0, 0, 0, ...) DELTA (0, 3, -2, 0, 0, 0, ...) begins :
1
1, 0
1, 3, 0
1, 8, 3, 0
1, 15, 17, 3, 0
1, 24, 54, 26, 3, 0
1, 35, 130, 120, 35, 3, 0
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207608 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207609 *)
-
from sympy import Poly
from sympy.abc import x
def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
def v(n, x): return 1 if n==1 else 2*x*u(n - 1, x) + (x + 1)*v(n - 1, x)
def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
A143787
Number of compositions of n into floor((3*j)/2) kinds of j's for all j>=1.
Original entry on oeis.org
1, 1, 4, 11, 33, 95, 278, 808, 2355, 6856, 19969, 58151, 169353, 493190, 1436288, 4182793, 12181260, 35474611, 103310209, 300862991, 876181998, 2551642760, 7430968523, 21640683328, 63022629465, 183536340391, 534499885849, 1556586163406, 4533135643968, 13201529892305, 38445880553108, 111963215139163, 326062542045345
Offset: 0
-
LinearRecurrence[{2,3,-1},{1,1,4,11},50] (* Paolo Xausa, Nov 14 2023 *)
A176848
Number of compositions of n into floor(j/3) kinds of j's for all j>=1.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 3, 4, 5, 10, 15, 21, 36, 56, 83, 134, 210, 320, 505, 791, 1221, 1911, 2988, 4639, 7240, 11305, 17595, 27436, 42806, 66691, 103968, 162144, 252720, 393965, 614285, 957581, 1492791, 2327396, 3628273, 5656274, 8818275, 13747425, 21431700, 33411976, 52088551, 81204526, 126596778, 197361904, 307682405
Offset: 0
- Jarib R. Acosta, Yadira Caicedo, Juan P. Poveda, José L. Ramírez, Mark Shattuck, Some New Restricted n-Color Composition Functions, J. Int. Seq., Vol. 22 (2019), Article 19.6.4.
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 2, -1).
Showing 1-6 of 6 results.
Comments