A230448
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = A226205(n+1), n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 0, 1, 1, 3, 1, 2, 4, 5, 1, 3, 6, 9, 16, 1, 4, 9, 15, 25, 39, 1, 5, 13, 24, 40, 64, 105, 1, 6, 18, 37, 64, 104, 169, 272, 1, 7, 24, 55, 101, 168, 273, 441, 715, 1, 8, 31, 79, 156, 269, 441, 714, 1156, 1869, 1, 9, 39, 110, 235, 425, 710, 1155, 1870, 3025, 4896
Offset: 0
The first few rows of triangle T(n, k), n >= 0 and 0 <= k <= n.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1
1| 1, 0
2| 1, 1, 3
3| 1, 2, 4, 5
4| 1, 3, 6, 9, 16
5| 1, 4, 9, 15, 25, 39
6| 1, 5, 13, 24, 40, 64, 105
7| 1, 6, 18, 37, 64, 104, 169, 272
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1, 0, 3, 5, 16, 39, 105, 272
1| 1, 1, 4, 9, 25, 64, 169, 441
2| 1, 2, 6, 15, 40, 104, 273, 714
3| 1, 3, 9, 24, 64, 168, 441, 1155
4| 1, 4, 13, 37, 101, 269, 710, 1865
5| 1, 5, 18, 55, 156, 425, 1135, 3000
6| 1, 6, 24, 79, 235, 660, 1795, 4795
7| 1, 7, 31, 110, 345, 1005, 2800, 7595
-
T := proc(n, k) option remember: if k=0 then return(1) elif k=n then return(combinat[fibonacci](n+2)*combinat[fibonacci](n-1)) else procname(n-1, k-1) + procname(n-1, k) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
T := proc(n, k): add(A035317(n+k-p-2, p), p=0..k) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
A001654
Golden rectangle numbers: F(n) * F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
Original entry on oeis.org
0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719, 427859097160, 1120149658760
Offset: 0
A195971
Number of n X 1 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.
Original entry on oeis.org
0, 1, 3, 4, 5, 9, 16, 25, 39, 64, 105, 169, 272, 441, 715, 1156, 1869, 3025, 4896, 7921, 12815, 20736, 33553, 54289, 87840, 142129, 229971, 372100, 602069, 974169, 1576240, 2550409, 4126647, 6677056, 10803705, 17480761, 28284464, 45765225
Offset: 0
All solutions for n=4:
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
-
a:=[1,3,4,5];; for n in [5..40] do a[n]:=a[n-1]+a[n-3]+a[n-4]; od; Concatenation([0], a); # G. C. Greubel, Apr 03 2019
-
R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x)^2/(1-x-x^3-x^4) )); // G. C. Greubel, Apr 03 2019
-
Table[(LucasL[n + 3] - 2 Sin[n Pi/2] - 4 Cos[n Pi/2])/5, {n, 0, 40}] (* Eric W. Weisstein, Apr 10 2018 *)
LinearRecurrence[{1, 0, 1, 1}, {0, 1, 3, 4, 5}, 40] (* Eric W. Weisstein, Apr 10 2018; amended for a(0) by Georg Fischer, Apr 03 2019 *)
CoefficientList[Series[x*(1+x)^2/(1-x-x^3-x^4), {x, 0, 40}], x] (* Eric W. Weisstein, Apr 10 2018 *)
-
my(x='x+O('x^40)); concat([0], Vec(x*(1+x)^2/(1-x-x^3-x^4))) \\ G. C. Greubel, Apr 03 2019
-
(x*(1+x)^2/(1-x-x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 03 2019
A236428
a(n) = F(n+1)^2 + F(n+1)*F(n) - F(n)^2, where F = A000045.
Original entry on oeis.org
1, 1, 5, 11, 31, 79, 209, 545, 1429, 3739, 9791, 25631, 67105, 175681, 459941, 1204139, 3152479, 8253295, 21607409, 56568929, 148099381, 387729211, 1015088255, 2657535551, 6957518401, 18215019649, 47687540549, 124847601995, 326855265439, 855718194319
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
- R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), 140-142.
- Richard R. Forberg, Plot of a(n) mod 61
- Bridget Rozema and Maisie Smith, Edge Covers of Unions of Path and Cycle Graphs, 2024.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n listed in
A264080.
-
[Fibonacci(n+1)^2+Fibonacci(n+1)*Fibonacci(n)- Fibonacci(n)^2: n in [0..30]]; // Vincenzo Librandi, Jan 20 2016
-
F:=Fibonacci; [F(n+1)^2+F(n)*F(n-1): n in [0..30]]; // Bruno Berselli, Feb 15 2017
-
a[n_] := Fibonacci[n+1]^2 + Fibonacci[n+1]*Fibonacci[n] - Fibonacci[n]^2; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Feb 27 2014 *)
LinearRecurrence[{2, 2, -1}, {1, 1, 5}, 40] (* Vincenzo Librandi, Jan 20 2016 *)
-
F=fibonacci;
a(n)=F(n+1)^2 + F(n+1)*F(n) - F(n)^2;
vector(33,n,a(n-1)) \\ Joerg Arndt, Feb 23 2014
-
Vec((x^2-x+1)/((x+1)*(x^2-3*x+1)) + O(x^100)) \\ Colin Barker, Dec 20 2014
-
a(n) = round((2^(-n)*(3*(-2)^n-(3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n))/5) \\ Colin Barker, Sep 28 2016
A264080
a(n) = 6*F(n)*F(n+1) + (-1)^n, where F = A000045.
Original entry on oeis.org
1, 5, 13, 35, 91, 239, 625, 1637, 4285, 11219, 29371, 76895, 201313, 527045, 1379821, 3612419, 9457435, 24759887, 64822225, 169706789, 444298141, 1163187635, 3045264763, 7972606655, 20872555201, 54645058949, 143062621645, 374542805987, 980565796315
Offset: 0
-
[6*Fibonacci(n)*Fibonacci(n+1)+(-1)^n: n in [0..30]];
-
a:= n-> (<<0|1|0>, <0|0|1>, <-1|2|2>>^n. <<1,5,13>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 28 2016
-
Table[6 Fibonacci[n] Fibonacci[n + 1] + (-1)^n, {n, 0, 30}]
LinearRecurrence[{2,2,-1},{1,5,13},30] (* Harvey P. Dale, Jul 12 2019 *)
-
makelist(6*fib(n)*fib(n+1)+(-1)^n, n, 0, 30);
-
for(n=0, 30, print1(6*fibonacci(n)*fibonacci(n+1)+(-1)^n", "));
-
a(n) = round((2^(-n)*(-(-2)^n-3*(3-sqrt(5))^n*(-1+sqrt(5))+3*(1+sqrt(5))*(3+sqrt(5))^n))/5) \\ Colin Barker, Sep 28 2016
-
Vec((1+3*x+x^2)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 28 2016
-
[6*fibonacci(n)*fibonacci(n+1)+(-1)^n for n in (0..30)]
A260259
a(n) = F(n)*F(n+1) - (-1)^n, where F = A000045.
Original entry on oeis.org
-1, 2, 1, 7, 14, 41, 103, 274, 713, 1871, 4894, 12817, 33551, 87842, 229969, 602071, 1576238, 4126649, 10803703, 28284466, 74049689, 193864607, 507544126, 1328767777, 3478759199, 9107509826, 23843770273, 62423800999, 163427632718, 427859097161, 1120149658759
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..500
- A. Bremner, R. Høibakk, D. Lukkassen, Crossed ladders and Euler’s quartic, Annales Mathematicae et Informaticae, 36 (2009) pp. 29-41. See p. 33.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Cf.
A226205: numbers of the form F(n)*F(n+1)+(-1)^n.
-
[Fibonacci(n)*Fibonacci(n+1)-(-1)^n: n in [0..30]];
-
with(combinat): A260259:=n->fibonacci(n)*fibonacci(n+1)-(-1)^n: seq(A260259(n), n=0..50); # Wesley Ivan Hurt, Feb 04 2017
-
Table[Fibonacci[n] Fibonacci[n + 1] - (-1)^n, {n, 0, 30}]
-
makelist(fib(n)*fib(n+1)-(-1)^n,n,0,30);
-
for(n=0, 30, print1(fibonacci(n)*fibonacci(n+1)-(-1)^n", "));
-
a(n) = round((2^(-1-n)*(-3*(-1)^n*2^(2+n)-(3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n))/5) \\ Colin Barker, Sep 29 2016
-
Vec(-(1-4*x+x^2)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 29 2016
-
[fibonacci(n)*fibonacci(n+1)-(-1)^n for n in (0..30)]
A338225
a(n) = F(n+3) * F(n+1) + (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.
Original entry on oeis.org
2, 11, 23, 66, 167, 443, 1154, 3027, 7919, 20738, 54287, 142131, 372098, 974171, 2550407, 6677058, 17480759, 45765227, 119814914, 313679523, 821223647, 2149991426, 5628750623, 14736260451, 38580030722, 101003831723, 264431464439, 692290561602, 1812440220359, 4745030099483
Offset: 1
For n = 2, a(2) = F(2+3) * F(2+1) + (-1)^2 = 5 * 2 + 1 = 11.
- Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 50.
-
a[n_] := Fibonacci[n + 3] * Fibonacci[n + 1] + (-1)^n; Array[a, 30] (* Amiram Eldar, Jan 30 2021 *)
-
a(n) = fibonacci(n+3)*fibonacci(n+1) + (-1)^n; \\ Michel Marcus, Mar 25 2021
A236165
a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = a(1) = 1, a(2) = 0.
Original entry on oeis.org
1, 1, 0, 0, 2, 3, 3, 5, 10, 16, 24, 39, 65, 105, 168, 272, 442, 715, 1155, 1869, 3026, 4896, 7920, 12815, 20737, 33553, 54288, 87840, 142130, 229971, 372099, 602069, 974170, 1576240, 2550408, 4126647, 6677057, 10803705, 17480760, 28284464, 45765226, 74049691
Offset: 0
G.f. = 1 + x + 2*x^4 + 3*x^5 + 3*x^6 + 5*x^7 + 10*x^8 + 16*x^9 + ...
-
I:=[1,1,0,0]; [n le 4 select I[n] else Self(n-1)+Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 20 2015
-
a[ n_] := Fibonacci[ Quotient[ n, 2] - 1] Fibonacci[ Quotient[ n, 2] + 1 + Mod[n, 2]];
LinearRecurrence[{1,0,1,1},{1,1,0,0},50] (* Harvey P. Dale, Jan 19 2015 *)
CoefficientList[Series[(1 - x^2 - x^3) / (1 - x - x^3 - x^4), {x, 0, 70}], x] (* Vincenzo Librandi, Jan 20 2015 *)
-
{a(n) = fibonacci( n\2 - 1 ) * fibonacci( n\2 + 1 + n%2 )};
A341928
a(n) = F(n+4) * F(n+2) + 7 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.
Original entry on oeis.org
3, 31, 58, 175, 435, 1162, 3019, 7927, 20730, 54295, 142123, 372106, 974163, 2550415, 6677050, 17480767, 45765219, 119814922, 313679515, 821223655, 2149991418, 5628750631, 14736260443, 38580030730, 101003831715, 264431464447, 692290561594, 1812440220367
Offset: 1
For n = 2, a(2) = F(2+4) * F(2+2) + 7 * (-1)^2 = 8 * 3 + 7 = 31.
- Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 51 (in Turkish).
-
Table[Fibonacci[n + 4] * Fibonacci[n + 2] + 7 * (-1)^n, {n, 1, 28}] (* Amiram Eldar, Feb 23 2021 *)
-
a(n) = fibonacci(n+4)*fibonacci(n+2) + 7*(-1)^n; \\ Michel Marcus, Feb 23 2021
A343008
a(n) = F(n+5) * F(n+2) - 12 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.
Original entry on oeis.org
28, 27, 117, 260, 727, 1857, 4908, 12803, 33565, 87828, 229983, 602057, 1576252, 4126635, 10803717, 28284452, 74049703, 193864593, 507544140, 1328767763, 3478759213, 9107509812, 23843770287, 62423800985, 163427632732, 427859097147, 1120149658773
Offset: 1
For n = 2, a(2) = F(2+5) * F(2+2) - 12 * (-1)^2 = 13 * 3 - 12 = 27.
- B. Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 52.
Showing 1-10 of 11 results.
Next
Comments