cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201780 Riordan array ((1-x)^2/(1-2x), x/(1-2x)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 5, 4, 1, 4, 12, 13, 6, 1, 8, 28, 38, 25, 8, 1, 16, 64, 104, 88, 41, 10, 1, 32, 144, 272, 280, 170, 61, 12, 1, 64, 320, 688, 832, 620, 292, 85, 14, 1, 128, 704, 1696, 2352, 2072, 1204, 462, 113, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2011

Keywords

Comments

Diagonals ascending: 1, 0, 1, 1, 2, 2, 4, 5, 1, 8, 12, 4, ... (see A201509).

Examples

			Triangle begins:
  1;
  0,  1;
  1,  2,  1;
  2,  5,  4,  1;
  4, 12, 13,  6,  1;
  8, 28, 38, 25,  8,  1;
		

Crossrefs

Row sums: A052156

Programs

  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x)^2/(1-(y+2)*x) + O[x]^10, x] // Flatten (* Jean-François Alcover, Nov 03 2018 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) with T(0,0) = 0, T(1,0) = 0, T(2,0) = 0 and T(n,k)= 0 if k < 0 or if n < k.
Sum_{k=0..n} T(n,k)*x^k = A154955(n+1), A034008(n), A052156(n), A055841(n), A055842(n), A055846(n), A055270(n), A055847(n), A055995(n), A055996(n), A056002(n), A056116(n) for x = -1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)^2/(1-(y+2)*x).

A056116 a(n) = 121*12^(n-2), a(0)=1, a(1)=10.

Original entry on oeis.org

1, 10, 121, 1452, 17424, 209088, 2509056, 30108672, 361304064, 4335648768, 52027785216, 624333422592, 7492001071104, 89904012853248, 1078848154238976, 12946177850867712, 155354134210412544
Offset: 0

Views

Author

Barry E. Williams, Jul 04 2000

Keywords

Comments

For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9,10,11,12} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9,10,11,12} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 11*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • GAP
    concatenation([1,10], List([2..20], n-> 121*12^(n-2) )); # G. C. Greubel, Jan 18 2020
  • Magma
    [1,10] cat [121*12^(n-2): n in [2..20]]; // G. C. Greubel, Jan 18 2020
    
  • Maple
    1,10, seq( 121*12^(n-2), n=2..20); # G. C. Greubel, Jan 18 2020
  • Mathematica
    LinearRecurrence[{12},{1,10,121},20] (* Harvey P. Dale, Oct 20 2015 *)
  • PARI
    concat([1, 10], vector(20, n, 121*12^(n-1) )) \\ G. C. Greubel, Jan 18 2020
    
  • Sage
    [1,10]+[121*12^(n-2) for n in (2..20)] # G. C. Greubel, Jan 18 2020
    

Formula

a(n) = 12*a(n-1) + (-1)^n*C(2, 2-n).
G.f.: (1-x)^2/(1-12*x).
a(n) = Sum_{k=0..n} A201780(n,k)*10^k. - Philippe Deléham, Dec 05 2011
E.g.f.: (23 - 12*x + 121*exp(12*x))/144. - G. C. Greubel, Jan 18 2020

Extensions

More terms from James Sellers, Jul 04 2000
Showing 1-2 of 2 results.