cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201551 Number of arrays of n integers in -7..7 with sum zero.

Original entry on oeis.org

1, 1, 15, 169, 2255, 30381, 418503, 5832765, 82073295, 1163205475, 16581420835, 237481736823, 3414582082055, 49258226347903, 712601187601395, 10334165623697259, 150186639579545295, 2186774434431445455, 31893473567409732813, 465851764737061437765
Offset: 0

Views

Author

R. H. Hardin, Dec 02 2011

Keywords

Examples

			Some solutions for n=5
.-6....6....2...-1...-4...-5...-2...-2....4...-6....2....7...-5...-5....3....5
.-2....0....7...-3....2....6...-3....7...-4...-2...-7...-3....6....2...-3...-7
..0...-6...-5...-2....6....5....5...-5...-6....5....5....1...-4....4....1...-4
..2...-2...-4....0...-7...-5....6...-7....6....6...-5....1....4....5...-3....7
..6....2....0....6....3...-1...-6....7....0...-3....5...-6...-1...-6....2...-1
		

Crossrefs

Column 7 of A201552.

Programs

  • Maple
    seq(add((-1)^k*binomial(n, k)*binomial(8*n-15*k-1, n-1), k = 0..floor(n/2)), n = 0..20); # Peter Bala, Oct 19 2024
  • Mathematica
    a[n_] := If[n==0, 1, Coefficient[Expand[Sum[x^k, {k, 0, 14}]^n], x^(7n)]]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 14, x^k))^n, 7*n, x)} \\ Seiichi Manyama, Dec 14 2018

Formula

a(n) ~ sqrt(3) * 15^n / (4*sqrt(7*Pi*n)). - Vaclav Kotesovec, Dec 15 2018

Extensions

a(0)=1 prepended by Seiichi Manyama, Dec 14 2018