cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005191 Central pentanomial coefficients: largest coefficient of (1 + x + ... + x^4)^n.

Original entry on oeis.org

1, 1, 5, 19, 85, 381, 1751, 8135, 38165, 180325, 856945, 4091495, 19611175, 94309099, 454805755, 2198649549, 10651488789, 51698642405, 251345549849, 1223798004815, 5966636799745, 29125608152345, 142330448514875, 696235630761115, 3408895901222375
Offset: 0

Views

Author

Keywords

Comments

Coefficient of x^n in ((1-x^10)/((1-x^5)(1-x^2)(1-x)))^n. - Michael Somos, Sep 24 2003
Note that n divides a(n+1) - a(n). - T. D. Noe, Mar 16 2005
Terms that are not a multiple of 5 have zero density, namely, there are fewer than n^(log(4)/log(5)) such terms among A005191(1..n). In particular, A005191(5k+2) and A005191(5k+4) are multiples of 5 for every k. - Max Alekseyev, Apr 25 2005
Number of n-step 1-D walks ending at the origin with steps of size 0, 1 or 2. - David Scambler, Apr 09 2012
Number of compositions of 2n into exactly n nonnegative parts <= four. a(2) = 5: [4,0], [3,1], [2,2], [1,3], [0,4]. - Alois P. Heinz, Sep 13 2018
Let f(m) = ceiling((q+log(q))/log(25)), where q = -log(log(5)/(2*m^2*Pi)) then f(a(n)) = n, for n > 0. - Miko Labalan, Oct 07 2024

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 603-604.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A035343, A349936 (bisection).
Row 5 of A077042. Column 2 of A201551 (?)

Programs

  • GAP
    List([0..25],n->Sum([0..Int(2*n/5)],k->Binomial(n,k)*Binomial(-n,2*n-5*k))); # Muniru A Asiru, Sep 26 2018
  • Maple
    seq(coeff(series(((1-x^10)/((1-x^5)*(1-x^2)*(1-x)))^n,x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[Sum[x^j,{j,0,4}]^n],x^(2*n)],{n,1,20}]}] (* Vaclav Kotesovec, Aug 09 2013 *)
    a[n_] := a[n] = Sum[n!/((q - n)!*(j - 2*q + 2*n)!*(i - 2*j + q)!*(j - 2*i)!*i!), {i, 0, n/2}, {j, 0, n}, {q, n, 2*n}]; Table[a[n], {n, 0, 29}] (* Zagros Lalo, Sep 25 2018 *)
    CoefficientList[Series[Sqrt[(-5x+2+2Sqrt[5x^2-6x+1])/(25x^3-10x^2-19x+4)],{x,0,30}],x] (* Harvey P. Dale, Aug 04 2021 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(((1-x^5)/(1-x)+x*O(x^(2*n)))^n,2*n))
    
  • PARI
    a(n)=if(n<0,0,polcoeff(((1-x^10)/((1-x^5)*(1-x^2)*(1-x))+x*O(x^n))^n,n))
    
  • PARI
    a(n) = sum(k=0,(2*n)\5,binomial(n,k)*binomial(-n,2*n-5*k)) /* Max Alekseyev */
    
  • PARI
    a(n) = round((5^n+sum(j=1,2*n-1,(sin(5*Pi*j/2/n)/sin(Pi*j/2/n))^n))/2/n)-2 /* Max Alekseyev */
    
  • PARI
    a(n) = vecmax(Vec(Pol(vector(5,k,1))^n)); \\ Michel Marcus, Jan 29 2017
    

Formula

a(n) = Sum_{k=0..floor(2n/5)} binomial(n,k)*binomial(-n, 2n-5k); a(n) = (5^n + Sum_{j=1..2n-1} (sin(5j*Pi/(2n))/sin(j*Pi/(2n)))^n)/(2n) - 2. - Max Alekseyev, Mar 04 2005
D-finite with recurrence: 2*n*(2*n-1)*(3*n-4)*a(n) - (3*n-1)*(19*n^2-38*n+18)*a(n-1) - 5*(n-1)*(3*n-4)*(2*n-1)*a(n-2) + 25*(n-1)*(n-2)*(3*n-1)*a(n-3) = 0. - R. J. Mathar, Feb 21 2010 [Proved using the Almkvist-Zeilberger algorithm in EKHAD. - Doron Zeilberger, Apr 02 2013]
G.f.: sqrt((-5*x+2+2*sqrt(5*x^2-6*x+1))/(25*x^3-10*x^2-19*x+4)). - Mark van Hoeij, May 06 2013
a(n) ~ 5^n/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 09 2013
a(n) = Sum_{i=0..n/2} Sum_{j=0..n} Sum_{q=n..2*n}(f); f=( n!/((q - n)!*(j - 2*q + 2*n)!*(i - 2*j + q)!*(j - 2*i)!*i!) ); f=0 for (j - 2*q + 2*n)<0 or (i - 2*j + q)<0 or (j - 2*i)<0. Also see formula in Links section. - Zagros Lalo, Sep 25 2018

A201552 Square array read by diagonals: T(n,k) = number of arrays of n integers in -k..k with sum equal to 0.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 7, 19, 19, 1, 9, 37, 85, 51, 1, 11, 61, 231, 381, 141, 1, 13, 91, 489, 1451, 1751, 393, 1, 15, 127, 891, 3951, 9331, 8135, 1107, 1, 17, 169, 1469, 8801, 32661, 60691, 38165, 3139, 1, 19, 217, 2255, 17151, 88913, 273127, 398567, 180325, 8953, 1
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2011

Keywords

Comments

Equivalently, the number of compositions of n*(k + 1) into n parts with maximum part size 2*k+1. - Andrew Howroyd, Oct 14 2017

Examples

			Some solutions for n=7, k=3:
..1...-2....1...-1....1...-3....0....0....1....2....3...-3....0....2....1....0
.-1....2...-2....2....2....2...-1....0....2....2...-2...-1...-2...-1....2...-1
.-3...-1....1...-3....2....1....0....1....3....0....2....0...-1....2...-2...-1
..0....3....3....3...-2...-2....3....3...-3...-3....0...-1...-1...-1....0....3
..2...-1...-1...-1...-3....0...-3...-2....1...-1...-1....1....1....0....3...-1
..2...-1...-3....0....2....3....0....1...-2....1....1....1....3...-2...-3...-3
.-1....0....1....0...-2...-1....1...-3...-2...-1...-3....3....0....0...-1....3
Table starts:
.   1,      1,       1,        1,        1,         1,...
.   3,      5,       7,        9,       11,        13,...
.   7,     19,      37,       61,       91,       127,...
.  19,     85,     231,      489,      891,      1469,...
.  51,    381,    1451,     3951,     8801,     17151,...
. 141,   1751,    9331,    32661,    88913,    204763,...
. 393,   8135,   60691,   273127,   908755,   2473325,...
.1107,  38165,  398567,  2306025,  9377467,  30162301,...
.3139, 180325, 2636263, 19610233, 97464799, 370487485,...
		

Crossrefs

Programs

  • Maple
    seq(print(seq(add((-1)^i*binomial(n, i)*binomial((k+1)*n-(2*k+1)*i-1, n-1), i = 0..floor((1/2)*n)), k = 1..10)), n = 1..10); # Peter Bala, Oct 16 2024
  • Mathematica
    comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}];  T[n_, k_] := comps[n*(k + 1), 2*k + 1, n]; Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
  • PARI
    comps(r, m, k)=sum(i=0, floor((r-k)/m), (-1)^i*binomial(r-1-i*m, k-1)*binomial(k, i));
    T(n,k) = comps(n*(k+1), 2*k+1, n); \\ Andrew Howroyd, Oct 14 2017

Formula

Empirical: T(n,k) = Sum_{i=0..floor(k*n/(2*k+1))} (-1)^i*binomial(n,i)* binomial((k+1)*n-(2*k+1)*i-1,n-1).
The above empirical formula is true and can be derived from the formula for the number of compositions with given number of parts and maximum part size. - Andrew Howroyd, Oct 14 2017
Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k + 1
T(3,k) = 3*k^2 + 3*k + 1
T(4,k) = (16/3)*k^3 + 8*k^2 + (14/3)*k + 1
T(5,k) = (115/12)*k^4 + (115/6)*k^3 + (185/12)*k^2 + (35/6)*k + 1
T(6,k) = (88/5)*k^5 + 44*k^4 + 46*k^3 + 25*k^2 + (37/5)*k + 1
T(7,k) = (5887/180)*k^6 + (5887/60)*k^5 + (2275/18)*k^4 + (357/4)*k^3 + (6643/180)*k^2 + (259/30)*k + 1
T(m,k) = (1/Pi)*integral_{x=0..Pi} (sin((k+1/2)x)/sin(x/2))^m dx; for the proof see Dirichlet Kernel link; so f(m,n) = (1/Pi)*integral_{x=0..Pi} (Sum_{k=-n..n} exp(I*k*x))^m dx = sum(integral(exp(I(k_1+...+k_m).x),x=0..Pi)/Pi,{k_1,...,k_m=-n..n}) = sum(delta_0(k1+...+k_m),{k_1,...,k_m=-n..n}) = number of arrays of m integers in -n..n with sum zero. - Yalcin Aktar, Dec 03 2011
T(n, k) = the constant term in the expansion of (x^(-k) + ... + x^(-1) + 1 + x + ... + x^k)^n = the coefficient of x^(k*n) (i.e., the central coefficient) in the expansion of (1 + x + ... + x^(2*k))^n = the coefficient of x^(k*n) in the expansion of ( (1 - x^(2*k+1))/(1 - x) )^n. Expanding the binomials and collecting terms gives the empirical formula above. - Peter Bala, Oct 16 2024

A208596 Number of n-bead necklaces labeled with numbers -7..7 not allowing reversal, with sum zero.

Original entry on oeis.org

1, 8, 57, 568, 6077, 69784, 833253, 10259448, 129245091, 1658145128, 21589248803, 284548542120, 3789094334455, 50900085245304, 688944374917247, 9386664978851448, 128633790260673263, 1771859642698543096, 24518513933529549357, 340679786167936420216
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			Some solutions for n=4:
.-4...-7...-7...-7...-4...-3...-3...-5...-2...-5...-7...-6...-6...-7...-6...-7
..0....4...-1....6....2...-3...-1....1....0...-3....6....3....5....1...-1...-2
..6....3....2...-1....1...-1...-2....7....1....3...-3...-3....5....7....0....4
.-2....0....6....2....1....7....6...-3....1....5....4....6...-4...-1....7....5
		

Crossrefs

Column 7 of A208597.

Programs

  • Mathematica
    comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}]; a[n_Integer, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2 k + 1, #] &]/n; a[n_] = a[n, 7]; Array[a, 20] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Formula

a(n) = (1/n) * Sum_{d | n} totient(n/d) * A201551(d). - Andrew Howroyd, Mar 02 2017

Extensions

a(14)-a(20) from Andrew Howroyd, Mar 02 2017
Showing 1-3 of 3 results.