cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201552 Square array read by diagonals: T(n,k) = number of arrays of n integers in -k..k with sum equal to 0.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 7, 19, 19, 1, 9, 37, 85, 51, 1, 11, 61, 231, 381, 141, 1, 13, 91, 489, 1451, 1751, 393, 1, 15, 127, 891, 3951, 9331, 8135, 1107, 1, 17, 169, 1469, 8801, 32661, 60691, 38165, 3139, 1, 19, 217, 2255, 17151, 88913, 273127, 398567, 180325, 8953, 1
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2011

Keywords

Comments

Equivalently, the number of compositions of n*(k + 1) into n parts with maximum part size 2*k+1. - Andrew Howroyd, Oct 14 2017

Examples

			Some solutions for n=7, k=3:
..1...-2....1...-1....1...-3....0....0....1....2....3...-3....0....2....1....0
.-1....2...-2....2....2....2...-1....0....2....2...-2...-1...-2...-1....2...-1
.-3...-1....1...-3....2....1....0....1....3....0....2....0...-1....2...-2...-1
..0....3....3....3...-2...-2....3....3...-3...-3....0...-1...-1...-1....0....3
..2...-1...-1...-1...-3....0...-3...-2....1...-1...-1....1....1....0....3...-1
..2...-1...-3....0....2....3....0....1...-2....1....1....1....3...-2...-3...-3
.-1....0....1....0...-2...-1....1...-3...-2...-1...-3....3....0....0...-1....3
Table starts:
.   1,      1,       1,        1,        1,         1,...
.   3,      5,       7,        9,       11,        13,...
.   7,     19,      37,       61,       91,       127,...
.  19,     85,     231,      489,      891,      1469,...
.  51,    381,    1451,     3951,     8801,     17151,...
. 141,   1751,    9331,    32661,    88913,    204763,...
. 393,   8135,   60691,   273127,   908755,   2473325,...
.1107,  38165,  398567,  2306025,  9377467,  30162301,...
.3139, 180325, 2636263, 19610233, 97464799, 370487485,...
		

Crossrefs

Programs

  • Maple
    seq(print(seq(add((-1)^i*binomial(n, i)*binomial((k+1)*n-(2*k+1)*i-1, n-1), i = 0..floor((1/2)*n)), k = 1..10)), n = 1..10); # Peter Bala, Oct 16 2024
  • Mathematica
    comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}];  T[n_, k_] := comps[n*(k + 1), 2*k + 1, n]; Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
  • PARI
    comps(r, m, k)=sum(i=0, floor((r-k)/m), (-1)^i*binomial(r-1-i*m, k-1)*binomial(k, i));
    T(n,k) = comps(n*(k+1), 2*k+1, n); \\ Andrew Howroyd, Oct 14 2017

Formula

Empirical: T(n,k) = Sum_{i=0..floor(k*n/(2*k+1))} (-1)^i*binomial(n,i)* binomial((k+1)*n-(2*k+1)*i-1,n-1).
The above empirical formula is true and can be derived from the formula for the number of compositions with given number of parts and maximum part size. - Andrew Howroyd, Oct 14 2017
Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k + 1
T(3,k) = 3*k^2 + 3*k + 1
T(4,k) = (16/3)*k^3 + 8*k^2 + (14/3)*k + 1
T(5,k) = (115/12)*k^4 + (115/6)*k^3 + (185/12)*k^2 + (35/6)*k + 1
T(6,k) = (88/5)*k^5 + 44*k^4 + 46*k^3 + 25*k^2 + (37/5)*k + 1
T(7,k) = (5887/180)*k^6 + (5887/60)*k^5 + (2275/18)*k^4 + (357/4)*k^3 + (6643/180)*k^2 + (259/30)*k + 1
T(m,k) = (1/Pi)*integral_{x=0..Pi} (sin((k+1/2)x)/sin(x/2))^m dx; for the proof see Dirichlet Kernel link; so f(m,n) = (1/Pi)*integral_{x=0..Pi} (Sum_{k=-n..n} exp(I*k*x))^m dx = sum(integral(exp(I(k_1+...+k_m).x),x=0..Pi)/Pi,{k_1,...,k_m=-n..n}) = sum(delta_0(k1+...+k_m),{k_1,...,k_m=-n..n}) = number of arrays of m integers in -n..n with sum zero. - Yalcin Aktar, Dec 03 2011
T(n, k) = the constant term in the expansion of (x^(-k) + ... + x^(-1) + 1 + x + ... + x^k)^n = the coefficient of x^(k*n) (i.e., the central coefficient) in the expansion of (1 + x + ... + x^(2*k))^n = the coefficient of x^(k*n) in the expansion of ( (1 - x^(2*k+1))/(1 - x) )^n. Expanding the binomials and collecting terms gives the empirical formula above. - Peter Bala, Oct 16 2024