cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201553 Number of arrays of 6 integers in -n..n with sum zero.

Original entry on oeis.org

1, 141, 1751, 9331, 32661, 88913, 204763, 418503, 782153, 1363573, 2248575, 3543035, 5375005, 7896825, 11287235, 15753487, 21533457, 28897757, 38151847, 49638147, 63738149, 80874529, 101513259, 126165719, 155390809, 189797061, 230044751
Offset: 0

Views

Author

R. H. Hardin, Dec 02 2011

Keywords

Comments

Row 6 of A201552.

Examples

			Some solutions for n=5:
..4....5....4...-2...-4....5...-1...-2...-1...-3...-3....0....2...-4....2...-5
..1...-4....5....3....4...-4....1....1....1....0....2...-2....1...-2...-1....1
.-2....3...-5....3....1....0...-4....2...-2....3....3....0....4....3....4....3
.-3...-3...-4....2....2...-3....5....4....4....0...-2....2....0....4...-1...-2
..5....4...-4...-2...-3...-1...-4...-1....1....0...-2....3...-4...-5...-2....4
.-5...-5....4...-4....0....3....3...-4...-3....0....2...-3...-3....4...-2...-1
		

Crossrefs

Cf. A201552.

Programs

  • Mathematica
    a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^6, x], x, 6n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 2*n, x^k))^6, 6*n, x)} \\ Seiichi Manyama, Dec 14 2018

Formula

Empirical: a(n) = (2*n+1)*(44*n^4+88*n^3+71*n^2+27*n+5)/5.
Empirical formula verified (see link) by Robert Israel, Dec 14 2018.
Empirical: a(n)= integral( (sin((n+1/2)x)/sin(x/2))^6, x=0..Pi)/Pi. - Yalcin Aktar, Dec 03 2011
Conjectures from Colin Barker, May 23 2018: (Start)
G.f.: x*(141 + 905*x + 940*x^2 + 120*x^3 + 7*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
(End)
a(n) = [x^(6*n)] (Sum_{k=0..2*n} x^k)^6. - Seiichi Manyama, Dec 14 2018
E.g.f.: exp(x)*(5 + 700*x + 3675*x^2 + 3750*x^3 + 1100*x^4 + 88*x^5)/5. - Stefano Spezia, Sep 28 2024

Extensions

a(0)=1 prepended by Seiichi Manyama, Dec 14 2018