cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A214223 E.g.f. satisfies: A(x) = x/(1 - sinh(A(x))).

Original entry on oeis.org

1, 2, 12, 124, 1800, 33606, 766976, 20689208, 643996800, 22719618250, 895853071872, 39043448067636, 1863697724715008, 96698693656306574, 5418685033626992640, 326140667283301420912, 20983722785088536346624, 1437191703493403790787218, 104400577820040681757736960
Offset: 1

Views

Author

Paul D. Hanna, Jul 07 2012

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 124*x^4/4! + 1800*x^5/5! +...
Related expansions:
A(x) = x + x*sinh(x) + d/dx x^2*sinh(x)^2/2! + d^2/dx^2 x^3*sinh(x)^3/3! + d^3/dx^3 x^4*sinh(x)^4/4! +...
log(A(x)/x) = sinh(x) + d/dx x*sinh(x)^2/2! + d^2/dx^2 x^2*sinh(x)^3/3! + d^3/dx^3 x^3*sinh(x)^4/4! +...
A(x)/x = 1 + x + 4*x^2/2! + 31*x^3/3! + 360*x^4/4! + 5601*x^5/5! + 109568*x^6/6! +...+ A201628(n)*x^n/n! +...
sinh(A(x)) = x + 2*x^2/2! + 13*x^3/3! + 136*x^4/4! + 1981*x^5/5! + 37056*x^6/6! + 846777*x^7/7! + 22861952*x^8/8! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - x*Sinh[x],{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 12 2014 *)
  • PARI
    {a(n)=(n-1)!*polcoeff(x/(1 - sinh(x+x*O(x^n)))^n,n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-x*sinh(x+x*O(x^n))), n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^m*sinh(x+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*sinh(x+x*O(x^n))^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}

Formula

E.g.f. A(x) satisfies:
(1) A(x - x*sinh(x)) = x.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*sinh(x)^n/n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*sinh(x)^n/n! ).
a(n) = n*A201628(n-1).
a(n) = (n-1)! * [x^n] x/(1 - sinh(x))^n.
a(n) ~ n^(n-1) / (sqrt(s+(2-s^2)*cosh(s)) * exp(n) * (s^2*cosh(s))^(n-1/2)), where s = 0.465767175470891411756875... is the root of the equation s*cosh(s) = 1-sinh(s). - Vaclav Kotesovec, Jan 12 2014

A381177 E.g.f. A(x) satisfies A(x) = 1/( 1 - A(x) * sinh(x * A(x)) ).

Original entry on oeis.org

1, 1, 6, 73, 1352, 33861, 1072000, 41083477, 1849680768, 95708731945, 5597075177984, 365091888890433, 26281788308598784, 2069729710424907181, 177006820644852031488, 16337090667286093559821, 1618592591411194127089664, 171337824188415839421148881, 19299478529228162963028508672
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a(n) = sum(k=0, n, k!*binomial(n+2*k+1, k)/(n+2*k+1)*a136630(n, k));

Formula

a(n) = Sum_{k=0..n} k! * binomial(n+2*k+1,k)/(n+2*k+1) * A136630(n,k).

A381179 E.g.f. A(x) satisfies A(x) = 1 + sinh(x*A(x)) / A(x).

Original entry on oeis.org

1, 1, 0, 1, 8, 21, 64, 1093, 8448, 47785, 654848, 9402537, 94222336, 1264390141, 23392960512, 363389219053, 5722054885376, 117602664867921, 2434091053613056, 47867013812467921, 1080303165427679232, 26716998341391367141, 645003218568158904320, 16403742152044108508181
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a(n) = sum(k=0, n, k!*binomial(n-k+1, k)/(n-k+1)*a136630(n, k));

Formula

a(n) = Sum_{k=0..n} k! * binomial(n-k+1,k)/(n-k+1) * A136630(n,k).
Showing 1-3 of 3 results.