cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201630 a(n) = a(n-1) + 2*a(n-2) with n>1, a(0)=2, a(1)=7.

Original entry on oeis.org

2, 7, 11, 25, 47, 97, 191, 385, 767, 1537, 3071, 6145, 12287, 24577, 49151, 98305, 196607, 393217, 786431, 1572865, 3145727, 6291457, 12582911, 25165825, 50331647, 100663297, 201326591, 402653185, 805306367, 1610612737, 3221225471, 6442450945, 12884901887
Offset: 0

Views

Author

Bruno Berselli, Dec 03 2011

Keywords

References

  • B. Satyanarayana and K. S. Prasad, Discrete Mathematics and Graph Theory, PHI Learning Pvt. Ltd. (Eastern Economy Edition), 2009, p. 73 (problem 3.3).

Crossrefs

Programs

  • Magma
    [n le 2 select 5*n-3 else Self(n-1)+2*Self(n-2): n in [1..33]];
    
  • Mathematica
    LinearRecurrence[{1, 2}, {2,7}, 33]
  • Maxima
    a[0]:2$ a[1]:7$ a[n]:=a[n-1]+2*a[n-2]$ makelist(a[n], n, 0, 32);
    
  • PARI
    v=vector(33); v[1]=2; v[2]=7; for(i=3, #v, v[i]=v[i-1]+2*v[i-2]); v
    
  • SageMath
    def A201630(n): return 3*2**n - (-1)**n
    print([A201630(n) for n in range(31)]) # G. C. Greubel, Feb 07 2025

Formula

G.f.: (2+5*x)/((1+x)*(1-2*x)).
a(n) = 3*2^n - (-1)^n.
a(n) = 7 + 2*Sum_{i=0..n-2} a(i), for n>0.
a(n) = A097581(A042948(n+1)).
a(n+2) - a(n) = a(n+1) + a(n) = A005010(n).
E.g.f.: 3*exp(2*x) - exp(-x). - G. C. Greubel, Feb 07 2025