cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A062092 a(n) = 2*a(n-1) - (-1)^n for n > 0, a(0)=2.

Original entry on oeis.org

2, 5, 9, 19, 37, 75, 149, 299, 597, 1195, 2389, 4779, 9557, 19115, 38229, 76459, 152917, 305835, 611669, 1223339, 2446677, 4893355, 9786709, 19573419, 39146837, 78293675, 156587349, 313174699, 626349397, 1252698795, 2505397589
Offset: 0

Views

Author

Amarnath Murthy, Jun 16 2001

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j] = A[i,i] = 1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n>=1, a(n-1) = charpoly(A,3). - Milan Janjic, Jan 24 2010

References

  • T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 98.

Crossrefs

Cf. A171160 (first differences).

Programs

Formula

a(n) = a(n-1) + 2*a(n-2).
a(n) = (7*2^n - (-1)^n)/3.
a(n) = 2^(n+1) + A001045(n).
A002487(a(n)) = A000032(n+1).
G.f.: (2+3*x)/(1-x-2*x^2).
E.g.f.: (7*exp(2*x) - exp(-x))/3.
a(n) = Sum_{j=0..2} A001045(n-j) (sum of 3 consecutive elements of the Jacobsthal sequence). - Alexander Adamchuk, May 16 2006
From Paul Curtz, Jun 03 2022: (Start)
a(n) = A001045(n+3) - A078008(n).
a(n) = A078008(n+3) - A001045(n).
a(n) = A005009(n-1) - a(n-1) for n >= 1.
a(n) = a(n-2) + A005009(n-2) for n >= 2.
a(n) = A154879(n-2) + 3*A201630(n-2) for n >= 2. (End)

Extensions

More terms from Jason Earls, Jun 18 2001
Additional comments from Michael Somos, Jun 24 2002

A199116 a(n) = 6*4^n + 1.

Original entry on oeis.org

7, 25, 97, 385, 1537, 6145, 24577, 98305, 393217, 1572865, 6291457, 25165825, 100663297, 402653185, 1610612737, 6442450945, 25769803777, 103079215105, 412316860417, 1649267441665, 6597069766657, 26388279066625, 105553116266497, 422212465065985, 1688849860263937
Offset: 0

Views

Author

Vincenzo Librandi, Nov 04 2011

Keywords

Comments

Bisection (odd part) of A181565 and A201630. - Bruno Berselli, Dec 04 2011
First differences of A221130, a(n) = A221130(n+2) - A221130(n+1). - Jaroslav Krizek, Jan 02 2013

Crossrefs

Programs

  • Magma
    [6*4^n+1: n in [0..30]];
  • Mathematica
    6*4^Range[0,30]+1 (* or *) LinearRecurrence[{5,-4},{7,25},30] (* Harvey P. Dale, Apr 18 2024 *)

Formula

a(n) = 4*a(n-1) - 3.
a(n) = 5*a(n-1) - 4*a(n-2).
G.f.: (7-10*x)/((1-x)*(1-4*x)). - Bruno Berselli, Nov 04 2011
From Elmo R. Oliveira, May 08 2025: (Start)
E.g.f.: exp(x)*(6*exp(3*x) + 1).
a(n) = A140529(n) + 2. (End)

A259713 a(n) = 3*2^n - 2*(-1)^n.

Original entry on oeis.org

1, 8, 10, 26, 46, 98, 190, 386, 766, 1538, 3070, 6146, 12286, 24578, 49150, 98306, 196606, 393218, 786430, 1572866, 3145726, 6291458, 12582910, 25165826, 50331646, 100663298, 201326590, 402653186, 805306366, 1610612738, 3221225470, 6442450946, 12884901886
Offset: 0

Views

Author

Paul Curtz, Jul 03 2015

Keywords

Comments

Inverse binomial transform of 3^n, with 3 (second term) excluded.
a(n) mod 9 gives A010689.

Crossrefs

Programs

  • Magma
    [3*2^n-2*(-1)^n: n in [0..40]]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    Table[3 2^n - 2 (-1)^n, {n, 0, 50}] (* Vincenzo Librandi, Jul 04 2015 *)
    LinearRecurrence[{1,2},{1,8},40] (* Harvey P. Dale, Aug 19 2020 *)
  • PARI
    Vec(-(7*x+1)/((x+1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Jul 03 2015
    

Formula

a(n) = a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(1)=8.
a(n) = 2*a(n-1) - 6*(-1)^n for n>0, a(0)=1.
a(4n+2) = 10*A182460(n); a(2n) = A096045(n), a(2n+1) = A140788(n).
a(n) = 3*A014551(n+1) - A201630(n).
a(n+2) - a(n) = a(n) + a(n+1) = A005010(n).
G.f.: -(7*x+1) / ((x+1)*(2*x-1)). - Colin Barker, Jul 03 2015

Extensions

Typo in data fixed by Colin Barker, Jul 03 2015

A124040 Triangle read by rows: characteristic polynomials of certain matrices, see Mathematica program.

Original entry on oeis.org

3, 3, -1, 8, -6, 1, 20, -24, 9, -1, 45, -84, 50, -12, 1, 125, -275, 225, -85, 15, -1, 320, -864, 900, -468, 129, -18, 1, 845, -2639, 3339, -2219, 840, -182, 21, -1, 2205, -7896, 11756, -9528, 4610, -1368, 244, -24, 1, 5780, -23256, 39825, -38121, 22518, -8532, 2079, -315, 27, -1, 15125, -67650, 130975, -144660, 101065, -46746, 14525, -3000, 395, -30, 1
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 04 2006

Keywords

Comments

Matrices:
1 X 1 : {{3}},
2 X 2 : {{3, 1}, {1, 3}},
3 X 3 : {{3, 1, 1}, {1, 3, 1}, {1, 1, 3}},
4 X 4 : {{3, 1, 0, 1}, {1, 3, 1, 0}, {0, 1, 3, 1}, {1, 0, 1, 3}},
5 X 5 : {{3, 1, 0, 0, 1}, {1, 3, 1, 0, 0}, {0, 1, 3, 1, 0}, {0, 0, 1, 3, 1}, {1, 0, 0, 1, 3}}.

Examples

			Triangle begins:
     3;
     3,     -1;
     8,     -6,     1;
    20,    -24,     9,     -1;
    45,    -84,    50,    -12,     1;
   125,   -275,   225,    -85,    15,    -1;
   320,   -864,   900,   -468,   129,   -18,    1;
   845,  -2639,  3339,  -2219,   840,  -182,   21,   -1;
  2205,  -7896, 11756,  -9528,  4610, -1368,  244,  -24,  1;
  5780, -23256, 39825, -38121, 22518, -8532, 2079, -315, 27, -1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, m_, d_]:= If[n==m, 3, If[n==m-1 || n==m+1, 1, If[(n==1 && m==d) || (n==d && m==1), 1, 0]]];
    M[d_]:= Table[T[n, m, d], {n,d}, {m,d}];
    Join[{M[1]}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d,12}]]

Formula

From G. C. Greubel, Feb 03 2025: (Start)
T(n, 1) = A099921(n-1) + 3*[n=1] - 2*[n=2] + 3*[n=3].
T(n, 2) = -(n-1)*Fibonacci(2*n-2).
T(n, 3) = (1/10)*(n-1)*(2*(n-1)*Fibonacci(2*n-1) - (n+2)*Fibonacci(2*n-2)).
T(n, 4) = (1/150)*(n-1)*(18*(n-1)*Fibonacci(2*n-1) - (5*n^2 - n + 18)*Fibonacci(2*n-2)).
T(n, 5) = (1/600)*(n-1)*(2*(n-1)*(n^2-2*n+24)*Fibonacci(2*n-1) - (n^3+15*n^2 -10*n+48)*Fibonacci(2*n-2)).
T(n, n) = (-1)^(n-1) + 2*[n=1].
T(n, n-1) = 3*(-1)^n*(n-1).
T(n, n-2) = (1/2)*(-1)^(n+1)*(n-1)*(9*n-20) + [n=3].
T(n, n-3) = (3/2)*(-1)^n*(n-1)*(n-3)*(3*n-8) + 2*[n=4].
T(n, n-4) = (1/8)*(-1)^(n-1)*n*(n-3)*(27*n^2-117*n+130) - 2*[n=5].
T(n, n-5) = (3/40)*(-1)^n*(n-1)*(n-4)*(n-5)*(27*n^2-195*n+362) + 2*[n=6].
T(n, n-6) = (1/240)*(-1)^(n-1)*(n-1)*(n-5)*(n-6)(243*n^3-2997*n^2+12528*n -17752) -2*[n=7].
T(2*n-1, n) = 2*(-1)^(n-1)*A370280(n-1) + [n=1].
Sum_{k=1..n} T(n, k) = A010675(n-1) + 3*[n=1] -2*[n=2] +3*[n=3].
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A201630(n-2) - A201630(n-1) + (1/4)*[n=1] + (7/2)*[n=2] + 2*[n=3].
(End)
Showing 1-4 of 4 results.