cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A221130 a(n) = 2^(2*n - 1) + n.

Original entry on oeis.org

3, 10, 35, 132, 517, 2054, 8199, 32776, 131081, 524298, 2097163, 8388620, 33554445, 134217742, 536870927, 2147483664, 8589934609, 34359738386, 137438953491, 549755813908, 2199023255573, 8796093022230, 35184372088855, 140737488355352, 562949953421337
Offset: 1

Views

Author

Jaroslav Krizek, Jan 02 2013

Keywords

Comments

Conjecture: a(n ) = the smallest numbers w such that numbers w, w+1,…, w+k-1 for k=1,2,…n are numbers of form h*2^m + m, where 1<=h <2^m, m = natural number (see A221129).
a(5) = 517 because numbers 517, 518, 519, 520, 521 are numbers of presented form.
517 = 16*2^5 + 5, 518 = 8*2^6 + 6, 519 = 4*2^7 + 7, 520 = 2*2^8 + 8, 521 = 1*2^9 + 9 (that is, numbers (2^(n-k))*(2^(n+k-1))+n+k-1, for k=1,2,,...n).

Examples

			a(5)=2^(2*5-1)+5=517.
		

Crossrefs

Formula

a(n+1) = a(n) + 3*2^(2*n-1)+1 = a(n) + 6*4^(n-1)+1 = a(n) + 2^(2*n+1) - 2^(2*n-1) + 1 = a(n) + A199116(n-1).
G.f. -x*(3-8*x+2*x^2) / ( (4*x-1)*(x-1)^2 ). - R. J. Mathar, Jan 17 2013

A221129 Numbers of form k*2^n + n where 1 <= k < 2^n and n > 0.

Original entry on oeis.org

3, 6, 10, 11, 14, 19, 20, 27, 35, 36, 37, 43, 51, 52, 59, 68, 69, 70, 84, 100, 101, 116, 132, 133, 134, 135, 148, 164, 165, 180, 196, 197, 198, 212, 228, 229, 244, 261, 262, 263, 264, 293, 325, 326, 357, 389, 390, 391, 421, 453, 454, 485, 517, 518, 519, 520, 521
Offset: 1

Views

Author

Jaroslav Krizek, Jan 02 2013

Keywords

Comments

Subsequence of primes: 3, 11, 19, 37, 43, 59, 101, 197, 229, 263, ...

Examples

			a(6) = 19 = 2 *2^3 + 3.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    sort([seq(seq(k*2^n+n,k=1..min(2^n-1,(N-n)/2^n)),n=1..ilog2(N))]); # Robert Israel, Jan 21 2019
  • Mathematica
    seqUpTo[n_] := Select[Union@Flatten@Table[k*2^h + h, {h, Floor@Log[2, n]}, {k, Min[2^h - 1, Floor[n/2^h]]}], # <= n &]; seqUpTo[521] (* Giovanni Resta, Jan 08 2013 *)

A280173 a(0) = 1, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [5, -4].

Original entry on oeis.org

1, 7, 10, 25, 46, 97, 190, 385, 766, 1537, 3070, 6145, 12286, 24577, 49150, 98305, 196606, 393217, 786430, 1572865, 3145726, 6291457, 12582910, 25165825, 50331646, 100663297, 201326590, 402653185, 805306366, 1610612737, 3221225470, 6442450945, 12884901886
Offset: 0

Views

Author

Paul Curtz, Dec 28 2016

Keywords

Comments

a(n) mod 9 = period 2: repeat [1, 7].
The last digit from 7 is of period 4: repeat [7, 0, 5, 6].
The bisection A096045 = 1, 10, 46, ... is based on Bernoulli numbers.
a(n) is a companion to A051049(n).
With an initial 0, A051049(n) is an autosequence of the first kind.
With an initial 2, this sequence is an autosequence of the second kind.
See the reference.
Difference table:
1, 7, 10, 25, 46, 97, ... = this sequence.
6, 3, 15, 21, 51, 93, ... = 3*A014551(n)
-3, 12, 6, 30, 42, 102, ... = -3 followed by 6*A014551(n).
The main diagonal of the difference table gives A003945: 1, 3, 6, 12, 24, ...

Examples

			a(0) = 1, a(1) = 2*1 + 5 = 7, a(2) = 2*7 - 4 = 10, a(3) = 2*10 + 5 = 25.
		

Crossrefs

Programs

  • Maple
    seq(3*2^n-(-1)^n*(1+irem(n+1,2)),n=0..32); # Peter Luschny, Dec 29 2016
  • Mathematica
    LinearRecurrence[{2,1,-2},{1,7,10},50] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    Vec((1 + 5*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 28 2016

Formula

a(2n) = 3*4^n - 2, a(2n+1) = 6*4^n + 1.
a(n+2) = a(n) + 9*2^n, a(0) = 1, a(1) = 7.
a(n) = 2*A051049(n+1) - A051049(n).
From Colin Barker, Dec 28 2016: (Start)
a(n) = 3*2^n - 2 for n even.
a(n) = 3*2^n + 1 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2.
G.f.: (1 + 5*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
(End)

A280345 a(0) = 3, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [1, -2].

Original entry on oeis.org

3, 7, 12, 25, 48, 97, 192, 385, 768, 1537, 3072, 6145, 12288, 24577, 49152, 98305, 196608, 393217, 786432, 1572865, 3145728, 6291457, 12582912, 25165825, 50331648, 100663297, 201326592, 402653185, 805306368, 1610612737, 3221225472, 6442450945, 12884901888
Offset: 0

Views

Author

Paul Curtz, Jan 01 2017

Keywords

Comments

a(n) mod 9 is a periodic sequence of length 2: repeat [3, 7].
From 7, the last digit is of period 4: repeat [7, 2, 5, 8].
(Main sequence for the signature (2,1,-2): 0, 0, 1, 2, 5, 10, 21, 42, ... = 0 followed by A000975(n) = b(n), which first differences are A001045(n) (Paul Barry, Oct 08 2005). Then, 0 followed by b(n) is an autosequence of the first kind. The corresponding autosequence of the second kind is 0, 0, 2, 3, 8, 15, 32, 63, ... . See A277078(n).)
Difference table of a(n):
3, 7, 12, 25, 48, 97, 192, ...
4, 5, 13, 23, 49, 95, 193, ... = -(-1)^n* A140683(n)
1, 8, 10, 26, 46, 98, 190, ... = A259713(n)
7, 2, 16, 20, 52, 92, 196, ...
-5, 14, 4, 32, 40, 104, 184, ...
... .

Examples

			a(0) = 3, a(1) = 2*3 + 1 = 7, a(2) = 2*7 - 2 = 12, a(3) = 2*12 + 1 = 25.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[n_] := a[n] = 2 a[n - 1] + 1 + (-3) Boole[EvenQ@ n]; Table[a@ n, {n, 0, 32}] (* or *)
    CoefficientList[Series[(3 + x - 5 x^2)/((1 - x) (1 + x) (1 - 2 x)), {x, 0, 32}], x] (* Michael De Vlieger, Jan 01 2017 *)
  • PARI
    Vec((3 + x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Jan 01 2017

Formula

a(2n) = 3*4^n, a(2n+1) = 6*4^n + 1.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n>2.
a(n+2) = a(n) + 9*2^n.
a(n) = 2^(n+2) - A051049(n).
From Colin Barker, Jan 01 2017: (Start)
a(n) = 3*2^n for n even.
a(n) = 3*2^n + 1 for n odd.
G.f.: (3 + x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
(End)
Binomial transform of 3, followed by (-1)^n* A140657(n).

Extensions

More terms from Colin Barker, Jan 01 2017
Showing 1-4 of 4 results.