cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A199116 a(n) = 6*4^n + 1.

Original entry on oeis.org

7, 25, 97, 385, 1537, 6145, 24577, 98305, 393217, 1572865, 6291457, 25165825, 100663297, 402653185, 1610612737, 6442450945, 25769803777, 103079215105, 412316860417, 1649267441665, 6597069766657, 26388279066625, 105553116266497, 422212465065985, 1688849860263937
Offset: 0

Views

Author

Vincenzo Librandi, Nov 04 2011

Keywords

Comments

Bisection (odd part) of A181565 and A201630. - Bruno Berselli, Dec 04 2011
First differences of A221130, a(n) = A221130(n+2) - A221130(n+1). - Jaroslav Krizek, Jan 02 2013

Crossrefs

Programs

  • Magma
    [6*4^n+1: n in [0..30]];
  • Mathematica
    6*4^Range[0,30]+1 (* or *) LinearRecurrence[{5,-4},{7,25},30] (* Harvey P. Dale, Apr 18 2024 *)

Formula

a(n) = 4*a(n-1) - 3.
a(n) = 5*a(n-1) - 4*a(n-2).
G.f.: (7-10*x)/((1-x)*(1-4*x)). - Bruno Berselli, Nov 04 2011
From Elmo R. Oliveira, May 08 2025: (Start)
E.g.f.: exp(x)*(6*exp(3*x) + 1).
a(n) = A140529(n) + 2. (End)

A221129 Numbers of form k*2^n + n where 1 <= k < 2^n and n > 0.

Original entry on oeis.org

3, 6, 10, 11, 14, 19, 20, 27, 35, 36, 37, 43, 51, 52, 59, 68, 69, 70, 84, 100, 101, 116, 132, 133, 134, 135, 148, 164, 165, 180, 196, 197, 198, 212, 228, 229, 244, 261, 262, 263, 264, 293, 325, 326, 357, 389, 390, 391, 421, 453, 454, 485, 517, 518, 519, 520, 521
Offset: 1

Views

Author

Jaroslav Krizek, Jan 02 2013

Keywords

Comments

Subsequence of primes: 3, 11, 19, 37, 43, 59, 101, 197, 229, 263, ...

Examples

			a(6) = 19 = 2 *2^3 + 3.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    sort([seq(seq(k*2^n+n,k=1..min(2^n-1,(N-n)/2^n)),n=1..ilog2(N))]); # Robert Israel, Jan 21 2019
  • Mathematica
    seqUpTo[n_] := Select[Union@Flatten@Table[k*2^h + h, {h, Floor@Log[2, n]}, {k, Min[2^h - 1, Floor[n/2^h]]}], # <= n &]; seqUpTo[521] (* Giovanni Resta, Jan 08 2013 *)
Showing 1-2 of 2 results.