cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A121068 Numbers k such that 8*k^2 + 7 is prime.

Original entry on oeis.org

0, 3, 27, 30, 33, 48, 57, 60, 72, 75, 78, 108, 117, 123, 135, 150, 162, 192, 198, 207, 228, 243, 270, 300, 303, 312, 342, 345, 390, 408, 417, 423, 435, 480, 498, 507, 510, 513, 543, 552, 555, 573, 618, 633, 642, 645, 657, 675, 705, 723, 732, 738, 747, 750, 780
Offset: 1

Views

Author

Parthasarathy Nambi, Aug 10 2006

Keywords

Comments

All terms are multiples of 3. - Zak Seidov, Aug 11 2006
A201704 is primes of form 8*k^2+7. James C. McMahon, Oct 12 2024

Examples

			If k=135 then 8*k^2 + 7 = 145807 (prime).
		

Crossrefs

Programs

  • Magma
    [ n: n in [0..1500] | IsPrime(8*n^2 + 7) ]; // Vincenzo Librandi, Jan 31 2011
    
  • Maple
    a:=proc(n) if isprime(8*n^2+7)=true then n else fi end: seq(a(n),n=0..1000); # Emeric Deutsch, Aug 11 2006
  • Mathematica
    Select[Range[0,780],PrimeQ[8#^2+7]&] (* James C. McMahon, Oct 12 2024 *)
  • PARI
    is(n)=isprime(8*n^2+7) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

More terms from Emeric Deutsch and Joshua Zucker, Aug 11 2006

A257163 Primes of the form 3n^2 + 2.

Original entry on oeis.org

2, 5, 29, 149, 509, 677, 1877, 3677, 8429, 9749, 11909, 13469, 17789, 22709, 27077, 28229, 45389, 46877, 53069, 70229, 72077, 81677, 100469, 102677, 114077, 128549, 141269, 154589, 180077, 192029, 195077, 207509, 223589, 230189, 261077, 312989, 340709, 352949, 395309, 399677, 426389
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 16 2015

Keywords

Comments

Two together with A027864(n).
Generated by n = 0, 1, 3, 7, 13, 15, 25, 35, 53, 57, ...

Examples

			2 is in this sequence because 3*0^2 + 2 = 2 and 2 is prime.
		

Crossrefs

Cf. A103564, A027864. Primes of the form k*n^2 + k - 1: A090698, this sequence, A121825, A201483, A201600, A201607, A201704.

Programs

  • Magma
    [a: n in [0..400] | IsPrime(a) where a is (3*n^2+2)];
    
  • Mathematica
    Select[Table[3 n^2 + 2, {n, 0, 400}], PrimeQ] (* Vincenzo Librandi, Apr 17 2015 *)
  • PARI
    select(isprime, vector(100, n, 3*n^2-6*n+5)) \\ Charles R Greathouse IV, Apr 17 2015
Showing 1-2 of 2 results.