cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201704 Primes of the form 8*k^2 + 7.

Original entry on oeis.org

7, 79, 5839, 7207, 8719, 18439, 25999, 28807, 41479, 45007, 48679, 93319, 109519, 121039, 145807, 180007, 209959, 294919, 313639, 342799, 415879, 472399, 583207, 720007, 734479, 778759, 935719, 952207, 1216807, 1331719, 1391119, 1431439
Offset: 1

Views

Author

Vincenzo Librandi, Dec 04 2011

Keywords

Crossrefs

Cf. A121068 (corresponding k).

Programs

  • Magma
    [a: n in [0..500] | IsPrime(a) where a is 8*n^2+7];
  • Mathematica
    Select[Table[8n^2+7,{n,0,200}],PrimeQ]

A121089 Numbers n such that f(n), f(n+1) and f(n+2) are prime, f(m)=72*m^2+7.

Original entry on oeis.org

9, 24, 169, 1479, 2964, 3039, 3299, 4084, 4474, 5534, 5574, 6449, 7359, 7409, 7529, 10789, 10879, 10994, 13819, 14324, 18574, 19709, 20329, 20749, 22179, 24529, 25089, 25104, 25229, 25404, 27714, 27779, 29849, 30234, 32369, 33384, 34799
Offset: 1

Views

Author

Zak Seidov, Aug 11 2006

Keywords

Comments

Apparently there are no four subsequent numbers m with f(m) prime.

Crossrefs

Programs

  • Mathematica
    Reap[Do[If[PrimeQ[72*n^2+7]&&PrimeQ[72*(n+1)^2+7]&&PrimeQ[72*(n+2)^2+7],Sow[n]],{n,0,300000}]][[2,1]]
    Flatten[Position[Partition[Table[PrimeQ[72n^2+7],{n,35000}],3,1],{True,True,True}]] (* Harvey P. Dale, Aug 17 2014 *)
Showing 1-2 of 2 results.