A201864 a(n) = ((F(n-1)+F(n-2))-1)/2 if F(n) is odd, otherwise a(n) = ((F(n-1)+F(n-2))-2)/2, where F(n) = A000045(n) is the n-th Fibonacci number.
0, 0, 0, 1, 2, 3, 6, 10, 16, 27, 44, 71, 116, 188, 304, 493, 798, 1291, 2090, 3382, 5472, 8855, 14328, 23183, 37512, 60696, 98208, 158905, 257114, 416019, 673134, 1089154, 1762288, 2851443, 4613732, 7465175, 12078908, 19544084, 31622992, 51167077, 82790070
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1,-1).
Programs
-
Magma
[IsOdd(Fibonacci(n)) select (Fibonacci(n)-1)/2 else Fibonacci(n)/2-1: n in [1..41]]; // Bruno Berselli, Dec 14 2011
-
Maple
a:= n-> (Matrix(5, (i, j)-> `if`(i=j-1, 1, `if`(i=5, [-1, -1, 1, 1, 1][j], 0)))^n. <<-1, 0, 0, 0, 1>>)[1, 1]: seq(a(n), n=1..50); # Alois P. Heinz, Dec 13 2011
-
Mathematica
CoefficientList[Series[x^3*(1+x)/((1-x)(1+x+x^2)(1-x-x^2)),{x,0,30}],x] (* Vincenzo Librandi, Mar 20 2012 *)
Formula
G.f.: x^4*(1+x)/((1-x)(1+x+x^2)(1-x-x^2)). - Alois P. Heinz, Dec 13 2011
a(n) = F(n) - ceiling(F(n-1)/2) - ceiling(F(n-2)/2). - Chunqing Liu, Aug 21 2023
Comments