cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A296435 Expansion of e.g.f. log(1 + arcsinh(x)).

Original entry on oeis.org

0, 1, -1, 1, -2, 13, -64, 173, -720, 12409, -114816, 370137, -1491456, 88556037, -1263184896, 2668274373, 21448022016, 2491377242481, -50233550831616, -34526890553679, 5153298175033344, 202383113207336829, -5453228045913292800, -25792743610973373219, 1393299559788718325760
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 12 2017

Keywords

Examples

			E.g.f.: A(x) = x/1! - x^2/2! + x^3/3! - 2*x^4/4! + 13*x^5/5! - 64*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    S:= series(ln(1+arcsinh(x)),x,51):
    seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Dec 12 2017
  • Mathematica
    nmax = 24; CoefficientList[Series[Log[1 + ArcSinh[x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    Vecrev(Pol(serlaplace(log(1 + asinh(x + O(x^30)))))) \\ Andrew Howroyd, Dec 12 2017

Formula

E.g.f.: log(1 + log(x + sqrt(1 + x^2))).
a(n) ~ 4*(Pi*cos(Pi*n/2) + 2*sin(Pi*n/2)) * n^(n-1) / ((4 + Pi^2) * exp(n)). - Vaclav Kotesovec, Dec 21 2017

A296439 Expansion of e.g.f. log(1 + arctanh(x))*exp(x).

Original entry on oeis.org

0, 1, 1, 4, 0, 53, -155, 2364, -15288, 216817, -2147215, 32932700, -433435816, 7431919285, -120703007451, 2326504612964, -44614898438480, 963118686971137, -21195404220321151, 508991484878443860, -12604990423335824688, 334199905021923072597, -9181752759370241656699, 266806716890671639953964
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 12 2017

Keywords

Examples

			E.g.f.: A(x) = x/1! + x^2/2! + 4*x^3/3! + 53*x^5/5! - 155*x^6/6! + 2364*x^7/7! - 15288*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(log(1+arctanh(x))*exp(x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + ArcTanh[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 23; CoefficientList[Series[Log[1 + (Log[1 + x] - Log[1 - x])/2] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(ox=O(x^30)); Vecrev(Pol(serlaplace(log(1 + atanh(x + ox)) * exp(x + ox)))) \\ Andrew Howroyd, Dec 12 2017

Formula

E.g.f.: log(1 + (log(1 + x) - log(1 - x))/2)*exp(x).
a(n) ~ -(-1)^n * (n-1)! * exp((1-exp(2))/(1+exp(2))) * ((exp(2)+1)/(exp(2)-1))^n. - Vaclav Kotesovec, Dec 21 2017

A297213 Expansion of e.g.f. log(1 + arctanh(x))*exp(-x).

Original entry on oeis.org

0, 1, -3, 10, -40, 213, -1383, 11002, -100616, 1062625, -12508067, 164543938, -2368224032, 37311284645, -634900302775, 11658800863330, -229004281334768, 4804124787023265, -106986109080667043, 2524701174424967130, -62860054802079553016, 1648303843512405478485
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			log(1 + arctanh(x))*exp(-x) = x/1! - 3*x^2/2! + 10*x^3/3! - 40*x^4/4! + 213*x^5/5! - 1383*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    S:= series(log(1+arctanh(x))*exp(-x),x,51):
    seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Jul 09 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Log[1 + ArcTanh[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Log[1 + (Log[1 + x] - Log[1 - x])/2] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!

A296982 Expansion of e.g.f. arctanh(log(1 + x)).

Original entry on oeis.org

0, 1, -1, 4, -18, 118, -930, 8888, -98504, 1248784, -17790480, 281590032, -4901447232, 93064850448, -1914144990576, 42396742460928, -1006101059149440, 25466710774651776, -684902462140798848, 19503187752732408576, -586221766070655432960
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2017

Keywords

Examples

			arctanh(log(1 + x)) = x^1/1! - x^2/2! + 4*x^3/3! - 18*x^4/4! + 118*x^5/5! - 930*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arctanh(log(1+x)),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[ArcTanh[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 20; CoefficientList[Series[Log[1 + Log[1 + x]]/2 - Log[1 - Log[1 + x]]/2, {x, 0, nmax}], x] Range[0, nmax]!

A331618 E.g.f.: exp(1 / (1 - arctanh(x)) - 1).

Original entry on oeis.org

1, 1, 3, 15, 97, 785, 7523, 83615, 1053281, 14838177, 230832867, 3929944623, 72633052545, 1447981700529, 30960823851267, 706676217730239, 17145815895371073, 440594781536265537, 11952178787661839427, 341291300477569866831, 10231558345117929439521
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[1/(1 - ArcTanh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    A296676[0] = 1; A296676[n_] := A296676[n] = Sum[Binomial[n, k] If[OddQ[k], (k - 1)!, 0] A296676[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A296676[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
  • PARI
    seq(n)={Vec(serlaplace(exp(1/(1 - atanh(x + O(x*x^n))) - 1)))} \\ Andrew Howroyd, Jan 22 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A296676(k) * a(n-k).
a(n) ~ (exp(2) + 1)^(n - 1/4) * n^(n - 1/4) / ((exp(2) - 1)^(n + 1/4) * exp(n - 4*exp(1)*sqrt(n/(exp(4) - 1)) - 2/(exp(4) - 1) - 1/2)). - Vaclav Kotesovec, Jan 26 2020

A302611 Expansion of e.g.f. -log(1 - x)*arctanh(x).

Original entry on oeis.org

0, 0, 2, 3, 16, 50, 368, 1764, 16896, 109584, 1297152, 10628640, 149944320, 1486442880, 24349317120, 283465647360, 5287713177600, 70734282393600, 1480103564083200, 22376988058521600, 519000166327910400, 8752948036761600000, 222845873874075648000, 4148476779335454720000
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Examples

			-log(1 - x)*arctanh(x) = 2*x^2/2! + 3*x^3/3! + 16*x^4/4! + 50*x^5/5! + 368*x^6/6! + 1764*x^7/7! + 16896*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(-log(1-x)*arctanh(x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[-Log[1 - x] ArcTanh[x], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    x='x+O('x^99); concat([0, 0], Vec(serlaplace(log(1-x)*log((1-x)/(1+x))/2))) \\ Altug Alkan, Apr 10 2018

Formula

E.g.f.: log(1 - x)*log((1 - x)/(1 + x))/2.

A296623 Expansion of e.g.f. log(1 + arctan(x)*arctanh(x)) (even powers only).

Original entry on oeis.org

0, 2, -12, 448, -21728, 2380032, -318185472, 69695846400, -18235768762368, 6697099792220160, -2892199532135841792, 1606188416621920911360, -1034069421398404544593920, 810882197441673837894696960, -727447103613537543910242385920, 766865924510666637669136261447680
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 17 2017

Keywords

Examples

			log(1 + arctan(x)*arctanh(x)) = 2*x^2/2! - 12*x^4/4! + 448*x^6/6! - 21728*x^8/8! + 2380032*x^10/10! - 318185472*x^12/12! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Log[1 + ArcTan[x] ArcTanh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    nmax = 15; Table[(CoefficientList[Series[Log[1 + (I/4) (Log[1 - I x] - Log[1 + I x]) (Log[1 + x] - Log[1 - x])], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

E.g.f.: log(1 + (i/4)*(log(1 - i*x) - log(1 + i*x))*(log(1 + x) - log(1 - x))), where i is the imaginary unit (even powers only).
Showing 1-7 of 7 results.