A296435
Expansion of e.g.f. log(1 + arcsinh(x)).
Original entry on oeis.org
0, 1, -1, 1, -2, 13, -64, 173, -720, 12409, -114816, 370137, -1491456, 88556037, -1263184896, 2668274373, 21448022016, 2491377242481, -50233550831616, -34526890553679, 5153298175033344, 202383113207336829, -5453228045913292800, -25792743610973373219, 1393299559788718325760
Offset: 0
E.g.f.: A(x) = x/1! - x^2/2! + x^3/3! - 2*x^4/4! + 13*x^5/5! - 64*x^6/6! + ...
-
S:= series(ln(1+arcsinh(x)),x,51):
seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Dec 12 2017
-
nmax = 24; CoefficientList[Series[Log[1 + ArcSinh[x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]], {x, 0, nmax}], x] Range[0, nmax]!
-
Vecrev(Pol(serlaplace(log(1 + asinh(x + O(x^30)))))) \\ Andrew Howroyd, Dec 12 2017
A296439
Expansion of e.g.f. log(1 + arctanh(x))*exp(x).
Original entry on oeis.org
0, 1, 1, 4, 0, 53, -155, 2364, -15288, 216817, -2147215, 32932700, -433435816, 7431919285, -120703007451, 2326504612964, -44614898438480, 963118686971137, -21195404220321151, 508991484878443860, -12604990423335824688, 334199905021923072597, -9181752759370241656699, 266806716890671639953964
Offset: 0
E.g.f.: A(x) = x/1! + x^2/2! + 4*x^3/3! + 53*x^5/5! - 155*x^6/6! + 2364*x^7/7! - 15288*x^8/8! + ...
-
a:=series(log(1+arctanh(x))*exp(x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
-
nmax = 23; CoefficientList[Series[Log[1 + ArcTanh[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Log[1 + (Log[1 + x] - Log[1 - x])/2] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
-
my(ox=O(x^30)); Vecrev(Pol(serlaplace(log(1 + atanh(x + ox)) * exp(x + ox)))) \\ Andrew Howroyd, Dec 12 2017
A297213
Expansion of e.g.f. log(1 + arctanh(x))*exp(-x).
Original entry on oeis.org
0, 1, -3, 10, -40, 213, -1383, 11002, -100616, 1062625, -12508067, 164543938, -2368224032, 37311284645, -634900302775, 11658800863330, -229004281334768, 4804124787023265, -106986109080667043, 2524701174424967130, -62860054802079553016, 1648303843512405478485
Offset: 0
log(1 + arctanh(x))*exp(-x) = x/1! - 3*x^2/2! + 10*x^3/3! - 40*x^4/4! + 213*x^5/5! - 1383*x^6/6! + ...
-
S:= series(log(1+arctanh(x))*exp(-x),x,51):
seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Jul 09 2018
-
nmax = 21; CoefficientList[Series[Log[1 + ArcTanh[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Log[1 + (Log[1 + x] - Log[1 - x])/2] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
A296982
Expansion of e.g.f. arctanh(log(1 + x)).
Original entry on oeis.org
0, 1, -1, 4, -18, 118, -930, 8888, -98504, 1248784, -17790480, 281590032, -4901447232, 93064850448, -1914144990576, 42396742460928, -1006101059149440, 25466710774651776, -684902462140798848, 19503187752732408576, -586221766070655432960
Offset: 0
arctanh(log(1 + x)) = x^1/1! - x^2/2! + 4*x^3/3! - 18*x^4/4! + 118*x^5/5! - 930*x^6/6! + ...
Cf.
A001710,
A003703,
A003708,
A009024,
A009454,
A009775,
A010050,
A104150,
A202139,
A296979,
A296980,
A296981.
-
a:=series(arctanh(log(1+x)),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 26 2019
-
nmax = 20; CoefficientList[Series[ArcTanh[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[Log[1 + Log[1 + x]]/2 - Log[1 - Log[1 + x]]/2, {x, 0, nmax}], x] Range[0, nmax]!
A331618
E.g.f.: exp(1 / (1 - arctanh(x)) - 1).
Original entry on oeis.org
1, 1, 3, 15, 97, 785, 7523, 83615, 1053281, 14838177, 230832867, 3929944623, 72633052545, 1447981700529, 30960823851267, 706676217730239, 17145815895371073, 440594781536265537, 11952178787661839427, 341291300477569866831, 10231558345117929439521
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[1/(1 - ArcTanh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A296676[0] = 1; A296676[n_] := A296676[n] = Sum[Binomial[n, k] If[OddQ[k], (k - 1)!, 0] A296676[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A296676[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
-
seq(n)={Vec(serlaplace(exp(1/(1 - atanh(x + O(x*x^n))) - 1)))} \\ Andrew Howroyd, Jan 22 2020
A302611
Expansion of e.g.f. -log(1 - x)*arctanh(x).
Original entry on oeis.org
0, 0, 2, 3, 16, 50, 368, 1764, 16896, 109584, 1297152, 10628640, 149944320, 1486442880, 24349317120, 283465647360, 5287713177600, 70734282393600, 1480103564083200, 22376988058521600, 519000166327910400, 8752948036761600000, 222845873874075648000, 4148476779335454720000
Offset: 0
-log(1 - x)*arctanh(x) = 2*x^2/2! + 3*x^3/3! + 16*x^4/4! + 50*x^5/5! + 368*x^6/6! + 1764*x^7/7! + 16896*x^8/8! + ...
Cf.
A005359,
A009410,
A009416,
A009429,
A009435,
A012697,
A081358,
A104150,
A177699,
A177700,
A202139,
A302610.
-
a:=series(-log(1-x)*arctanh(x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
-
nmax = 23; CoefficientList[Series[-Log[1 - x] ArcTanh[x], {x, 0, nmax}], x] Range[0, nmax]!
-
x='x+O('x^99); concat([0, 0], Vec(serlaplace(log(1-x)*log((1-x)/(1+x))/2))) \\ Altug Alkan, Apr 10 2018
A296623
Expansion of e.g.f. log(1 + arctan(x)*arctanh(x)) (even powers only).
Original entry on oeis.org
0, 2, -12, 448, -21728, 2380032, -318185472, 69695846400, -18235768762368, 6697099792220160, -2892199532135841792, 1606188416621920911360, -1034069421398404544593920, 810882197441673837894696960, -727447103613537543910242385920, 766865924510666637669136261447680
Offset: 0
log(1 + arctan(x)*arctanh(x)) = 2*x^2/2! - 12*x^4/4! + 448*x^6/6! - 21728*x^8/8! + 2380032*x^10/10! - 318185472*x^12/12! + ...
-
nmax = 15; Table[(CoefficientList[Series[Log[1 + ArcTan[x] ArcTanh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
nmax = 15; Table[(CoefficientList[Series[Log[1 + (I/4) (Log[1 - I x] - Log[1 + I x]) (Log[1 + x] - Log[1 - x])], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
Showing 1-7 of 7 results.