A202141 a(n) = 13*n^2 - 16*n + 5.
5, 2, 25, 74, 149, 250, 377, 530, 709, 914, 1145, 1402, 1685, 1994, 2329, 2690, 3077, 3490, 3929, 4394, 4885, 5402, 5945, 6514, 7109, 7730, 8377, 9050, 9749, 10474, 11225, 12002, 12805, 13634, 14489, 15370, 16277, 17210, 18169, 19154, 20165, 21202, 22265
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[13*n^2-16*n+5: n in [0..42]];
-
Maple
A202141:=n->13*n^2-16*n+5: seq(A202141(n), n=0..100); # Wesley Ivan Hurt, Oct 09 2017
-
Mathematica
Table[13 n^2 - 16 n + 5, {n, 0, 42}] LinearRecurrence[{3,-3,1},{5,2,25},50] (* Harvey P. Dale, Aug 23 2025 *)
-
PARI
for(n=0, 42, print1(13*n^2-16*n+5", "));
Formula
G.f.: (5 - 13*x + 34*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Wesley Ivan Hurt, Oct 09 2017
E.g.f.: (5 - 3*x + 13*x^2)*exp(x). - Elmo R. Oliveira, Oct 20 2024
Comments