cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202141 a(n) = 13*n^2 - 16*n + 5.

Original entry on oeis.org

5, 2, 25, 74, 149, 250, 377, 530, 709, 914, 1145, 1402, 1685, 1994, 2329, 2690, 3077, 3490, 3929, 4394, 4885, 5402, 5945, 6514, 7109, 7730, 8377, 9050, 9749, 10474, 11225, 12002, 12805, 13634, 14489, 15370, 16277, 17210, 18169, 19154, 20165, 21202, 22265
Offset: 0

Views

Author

Bruno Berselli, Dec 12 2011

Keywords

Comments

Numbers of the form (r*n - r + 1)^2 + ((r+1)*n - r)^2; in this case, r=2.
Inverse binomial transform of this sequence: 5,-3, 26, 0, 0 (0 continued).

Crossrefs

Cf. A190816 (r=1), A154355 (r=3), A161587.

Programs

  • Magma
    [13*n^2-16*n+5: n in [0..42]];
  • Maple
    A202141:=n->13*n^2-16*n+5: seq(A202141(n), n=0..100); # Wesley Ivan Hurt, Oct 09 2017
  • Mathematica
    Table[13 n^2 - 16 n + 5, {n, 0, 42}]
    LinearRecurrence[{3,-3,1},{5,2,25},50] (* Harvey P. Dale, Aug 23 2025 *)
  • PARI
    for(n=0, 42, print1(13*n^2-16*n+5", "));
    

Formula

G.f.: (5 - 13*x + 34*x^2)/(1-x)^3.
a(n) = A161587(n-1) + 1 with A161587(-1) = 4.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Wesley Ivan Hurt, Oct 09 2017
E.g.f.: (5 - 3*x + 13*x^2)*exp(x). - Elmo R. Oliveira, Oct 20 2024