A202192 Number of partitions of 5n with equal number of parts congruent to each of 1, 2, 3 and 4 modulo 5.
1, 1, 3, 8, 22, 53, 124, 269, 568, 1152, 2284, 4410, 8363, 15542, 28438, 51201, 90930, 159300, 275740, 471706, 798388, 1337478, 2219395, 3649432, 5950078, 9622364, 15442269, 24600952, 38919910, 61164114, 95513618, 148247892, 228761668, 351032568, 535772894
Offset: 0
Keywords
Links
Crossrefs
Cf. A046776.
Programs
-
Mathematica
mkl[i_, l_] := Module[{ll, mn, x}, ll = If[Mod[i, 5] == 0, l, MapAt[#+1&, l, Mod[i, 5]]]; mn = Min[l] - 1; If[mn <= 0, ll, Map[# - mn&, ll]]]; g[n_, i_, t_] := g[n, i, t] = Module[{m, mx}, If[n < 0, 0, If[n == 0, If[ t[[1]] > 0 && Equal @@ t[[1 ;; 4]], 1, 0] , If[i == 0, 0, If[i < 5, mx = Max[t]; m = n - 10 mx + t[[1]] + 2 t[[2]] + 3 t[[3]] + 4 t[[4]]; If[m >= 0 && Mod[m, 10] == 0, 1, 0], g[n, i-1, t] + g[n-i, i, mkl[i, t]]]]]]]; a[n_] := g[5n, 5n, {0, 0, 0, 0}] + PartitionsP[n]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, May 25 2019, after Alois P. Heinz in A046787 *)
Extensions
a(33)-a(34) from Alois P. Heinz, May 24 2019