cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202192 Number of partitions of 5n with equal number of parts congruent to each of 1, 2, 3 and 4 modulo 5.

Original entry on oeis.org

1, 1, 3, 8, 22, 53, 124, 269, 568, 1152, 2284, 4410, 8363, 15542, 28438, 51201, 90930, 159300, 275740, 471706, 798388, 1337478, 2219395, 3649432, 5950078, 9622364, 15442269, 24600952, 38919910, 61164114, 95513618, 148247892, 228761668, 351032568, 535772894
Offset: 0

Views

Author

Max Alekseyev, Dec 14 2011

Keywords

Crossrefs

Cf. A046776.

Programs

  • Mathematica
    mkl[i_, l_] := Module[{ll, mn, x}, ll = If[Mod[i, 5] == 0, l, MapAt[#+1&, l, Mod[i, 5]]]; mn = Min[l] - 1; If[mn <= 0, ll, Map[# - mn&, ll]]];
    g[n_, i_, t_] := g[n, i, t] = Module[{m, mx}, If[n < 0, 0, If[n == 0, If[ t[[1]] > 0 && Equal @@ t[[1 ;; 4]], 1, 0] , If[i == 0, 0, If[i < 5, mx = Max[t]; m = n - 10 mx + t[[1]] + 2 t[[2]] + 3 t[[3]] + 4 t[[4]]; If[m >= 0 && Mod[m, 10] == 0, 1, 0], g[n, i-1, t] + g[n-i, i, mkl[i, t]]]]]]];
    a[n_] :=  g[5n, 5n, {0, 0, 0, 0}] + PartitionsP[n];
    Table[a[n], {n, 0, 34}] (* Jean-François Alcover, May 25 2019, after Alois P. Heinz in A046787 *)

Formula

a(n) = A046776(n) + A202086(n) + A202088(n).
a(n) = A046787(n) + A000041(n).

Extensions

a(33)-a(34) from Alois P. Heinz, May 24 2019