cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202279 Numbers k such that the sum of digits^3 of k equals Sum_{d|k, 1

Original entry on oeis.org

142, 160, 1375, 6127, 12643, 51703, 86833, 103039, 104647, 112093, 137317, 218269, 261883, 266923, 449881, 505891, 617569, 907873
Offset: 1

Views

Author

Michel Lagneau, Dec 15 2011

Keywords

Comments

The sequence is finite because the restricted sum of divisors of n, for n composite, is at least sqrt(n), while the sum of the cubes of the digits of n is at most 9^3*log_10(n+1). - Giovanni Resta, Oct 05 2018

Examples

			160 is in the sequence because 1^3 + 6^3 + 0^3 = 217, and the sum of the divisors 1< d<160 is 2 + 4 + 5 + 8 + 10 + 16 + 20 + 32 + 40 + 80 = 217.
		

Crossrefs

Programs

  • Maple
    A055012 := proc(n)
            add(d^3,d=convert(n,base,10)) ;
    end proc:
    A048050 := proc(n)
            if n > 1 then
            numtheory[sigma](n)-1-n ;
            else
                    0;
            end if;
    end proc:
    isA202279 := proc(n)
            A055012(n) = A048050(n) ;
    end proc:
    for n from 1 do
            if isA202279(n) then
                    printf("%d,\n",n);
            end if;
    end do; # R. J. Mathar, Dec 15 2011
  • Mathematica
    Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]^3]]; Select[Range[2, 5*10^7], Q]
    Select[Range[1000000],DivisorSigma[1,#]-#-1==Total[IntegerDigits[#]^3]&] (* Harvey P. Dale, Jul 19 2014 *)

Formula

{n: A055012(n) = A048050(n)}. - R. J. Mathar, Dec 15 2011