A202279
Numbers k such that the sum of digits^3 of k equals Sum_{d|k, 1
142, 160, 1375, 6127, 12643, 51703, 86833, 103039, 104647, 112093, 137317, 218269, 261883, 266923, 449881, 505891, 617569, 907873
Offset: 1
Examples
160 is in the sequence because 1^3 + 6^3 + 0^3 = 217, and the sum of the divisors 1< d<160 is 2 + 4 + 5 + 8 + 10 + 16 + 20 + 32 + 40 + 80 = 217.
Programs
-
Maple
A055012 := proc(n) add(d^3,d=convert(n,base,10)) ; end proc: A048050 := proc(n) if n > 1 then numtheory[sigma](n)-1-n ; else 0; end if; end proc: isA202279 := proc(n) A055012(n) = A048050(n) ; end proc: for n from 1 do if isA202279(n) then printf("%d,\n",n); end if; end do; # R. J. Mathar, Dec 15 2011
-
Mathematica
Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]^3]]; Select[Range[2, 5*10^7], Q] Select[Range[1000000],DivisorSigma[1,#]-#-1==Total[IntegerDigits[#]^3]&] (* Harvey P. Dale, Jul 19 2014 *)
Comments