cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202299 y-values in the solution to x^2 - 18*y^2 = 1.

Original entry on oeis.org

0, 4, 136, 4620, 156944, 5331476, 181113240, 6152518684, 209004522016, 7100001229860, 241191037293224, 8193395266739756, 278334248031858480, 9455171037816448564, 321197481037727392696, 10911259184244914903100
Offset: 1

Views

Author

Vincenzo Librandi, Dec 18 2011

Keywords

Comments

The corresponding values of x of this Pell equation are in A056771.

Crossrefs

Programs

  • Magma
    I:=[0, 4]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]];
    
  • Mathematica
    LinearRecurrence[{34,-1},{0,4},30]
    With[{c=6*Sqrt[2]},Table[((17-2c)^n-(17+2c)^n)/-c,{n,0,20}]]//Simplify (* Harvey P. Dale, Dec 16 2024 *)
  • Maxima
    makelist(expand(((3+2*sqrt(2))^(2*n-2)-(3-2*sqrt(2))^(2*n-2))/(6*sqrt(2))), n, 1, 16); /* _Bruno Berselli, Dec 19 2011 */

Formula

a(n) = 34*a(n-1)-a(n-2) with a(1)=0, a(2)=4.
G.f.: 4*x^2/(1-34*x+x^2).
a(n) = (1/3)*A001542(2n-2). - Bruno Berselli, Dec 19 2011