A202345 Decimal expansion of x < 0 satisfying 2*x + 2 = exp(x).
7, 6, 8, 0, 3, 9, 0, 4, 7, 0, 1, 3, 4, 6, 5, 5, 6, 5, 2, 5, 5, 6, 8, 3, 5, 2, 6, 0, 7, 7, 5, 4, 7, 9, 9, 0, 9, 0, 6, 8, 4, 9, 1, 4, 8, 8, 7, 1, 9, 1, 8, 1, 9, 4, 5, 1, 0, 3, 1, 0, 3, 2, 7, 2, 4, 8, 3, 7, 8, 8, 9, 0, 1, 2, 7, 6, 2, 3, 4, 2, 0, 7, 0, 9, 1, 4, 5, 1, 3, 9, 0, 2, 0, 3, 3, 9, 5, 2, 6
Offset: 0
Examples
x<0: -0.76803904701346556525568352607754... x>0: 1.678346990016660653412884512094523...
Links
Crossrefs
Cf. A202320.
Programs
-
Mathematica
u = 2; v = 2; f[x_] := u*x + v; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110] RealDigits[r] (* A202345 *) r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110] RealDigits[r] (* A202346 *) RealDigits[-1 - LambertW[-Exp[-1]/2], 10, 100][[1]] (* G. C. Greubel, Nov 09 2017 *)
-
PARI
solve(x=-1, 0, 2*x+2-exp(x)) \\ Michel Marcus, Nov 09 2017
Formula
Equals -1 - lambertw(-exp(-1)/2). - G. C. Greubel, Nov 09 2017
Comments