A202357 Decimal expansion of the number x satisfying e*x = e^(-x).
2, 7, 8, 4, 6, 4, 5, 4, 2, 7, 6, 1, 0, 7, 3, 7, 9, 5, 1, 0, 9, 3, 5, 8, 7, 3, 9, 0, 2, 2, 9, 8, 0, 1, 5, 5, 4, 3, 9, 4, 7, 7, 4, 8, 8, 6, 1, 9, 7, 4, 5, 7, 6, 5, 4, 5, 3, 1, 7, 8, 1, 0, 5, 5, 3, 5, 0, 2, 9, 3, 7, 5, 4, 5, 9, 9, 4, 9, 8, 9, 8, 1, 9, 2, 0, 4, 9, 8, 4, 2, 8, 1, 1, 2, 9, 9, 4, 2, 8
Offset: 0
Examples
0.2784645427610737951093587390229801554394774886...
References
- Heine Halberstam and Hans Egon-Richert, Sieve Methods, Dover Publications (2011). See Theorem 2.1.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- W. Gautschi, The incomplete Gamma Function since Tricomi, Atti Conv. Lincei 147 (1999) 203, eq. (2.16).
- H. J. H. Tuenter, On the generalized Poisson distribution, arXiv:math/0606238 [math.ST], 2006. Published version on On the Generalized Poisson Distribution, Statistica Neerlandica, 54(3):374-376, November 2000.
- S. M. Zemyan, On the zeros of the Nth partial sum of the exponential series, Am. Math. Monthly 112 (2005) 891-909.
- Index entries for transcendental numbers.
Programs
-
Mathematica
u = E; v = 0; f[x_] := u*x + v; g[x_] := E^-x Plot[{f[x], g[x]}, {x, 0, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .27, .28}, WorkingPrecision -> 110] RealDigits[r] (* A202357 *) RealDigits[ ProductLog[1/E], 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *) RealDigits[LambertW[Exp[-1]],10,120][[1]] (* Harvey P. Dale, Dec 24 2019 *)
-
PARI
lambertw(exp(-1)) \\ Michel Marcus, Mar 21 2016
Formula
The constant in A202355 minus 1. - R. J. Mathar, Dec 21 2011
1+x+log(x)=0. - R. J. Mathar, Nov 02 2012
Equals LambertW(exp(-1)). - Vaclav Kotesovec, Jan 10 2014
Comments