cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202357 Decimal expansion of the number x satisfying e*x = e^(-x).

Original entry on oeis.org

2, 7, 8, 4, 6, 4, 5, 4, 2, 7, 6, 1, 0, 7, 3, 7, 9, 5, 1, 0, 9, 3, 5, 8, 7, 3, 9, 0, 2, 2, 9, 8, 0, 1, 5, 5, 4, 3, 9, 4, 7, 7, 4, 8, 8, 6, 1, 9, 7, 4, 5, 7, 6, 5, 4, 5, 3, 1, 7, 8, 1, 0, 5, 5, 3, 5, 0, 2, 9, 3, 7, 5, 4, 5, 9, 9, 4, 9, 8, 9, 8, 1, 9, 2, 0, 4, 9, 8, 4, 2, 8, 1, 1, 2, 9, 9, 4, 2, 8
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2011

Keywords

Comments

See A202322 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.2784645427610737951093587390229801554394774886...
		

References

  • Heine Halberstam and Hans Egon-Richert, Sieve Methods, Dover Publications (2011). See Theorem 2.1.

Crossrefs

Programs

  • Mathematica
    u = E; v = 0;
    f[x_] := u*x + v; g[x_] := E^-x
    Plot[{f[x], g[x]}, {x, 0, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .27, .28}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202357 *)
    RealDigits[ ProductLog[1/E], 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
    RealDigits[LambertW[Exp[-1]],10,120][[1]] (* Harvey P. Dale, Dec 24 2019 *)
  • PARI
    lambertw(exp(-1)) \\ Michel Marcus, Mar 21 2016

Formula

The constant in A202355 minus 1. - R. J. Mathar, Dec 21 2011
1+x+log(x)=0. - R. J. Mathar, Nov 02 2012
Equals LambertW(exp(-1)). - Vaclav Kotesovec, Jan 10 2014