A178473 For n>=0, let n!^(4) = A202369(n+1) and, for 0<=m<=n, C^(4)(n,m) = n!^(4)/(m!^(4)*(n-m)!^(4)). The sequence gives triangle of numbers C^(4)(n,m) with rows of length n+1.
1, 1, 1, 1, 2, 1, 1, 273, 273, 1, 1, 68, 9282, 68, 1, 1, 55, 1870, 1870, 55, 1, 1, 546, 15015, 3740, 15015, 546, 1, 1, 29, 7917, 1595, 1595, 7917, 29, 1
Offset: 0
Examples
Triangle begins n/m.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1......1 .2..|..1......2......1 .3..|..1....273 ...273......1 .4..|..1.....68...9282.....68......1 .5..|..1.....55...1870...1870.....55......1 .6..|..1....546..15015...3740..15015....546....1 .7..|..1.....29...7917...1595...1595...7917...29.....1 .8..|
Comments