A202462 a(n) = Sum_{j=1..n} Sum_{i=1..n} F(i,j), where F is the Fibonacci fusion array of A202453.
1, 5, 21, 70, 214, 614, 1703, 4619, 12363, 32812, 86636, 228012, 598893, 1571089, 4118305, 10790194, 28262594, 74014290, 193807315, 507451415, 1328617751, 3478516440, 9107117016, 23843134680, 62422772569, 163425968669, 427856404653
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-4,10,-2,-3,1).
Programs
-
GAP
F:=Fibonacci;; List([1..30], n-> F(n+2)*F(n+3) -2*F(n+4) +n+4); # G. C. Greubel, Jul 23 2019
-
Magma
F:=Fibonacci; [F(n+2)*F(n+3) -2*F(n+4) +n+4: n in [1..30]]; // G. C. Greubel, Jul 23 2019
-
Mathematica
(* First program *) n = 28; Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[ Table[Fibonacci[k], {k, 1, n}]]; P = Transpose[Q]; F = P.Q; a[m_] := Sum[F[[i]][[j]], {i, 1, m}, {j, 1, m}] Table[a[m], {m, 1, n}] (* A202462 *) Table[a[m] - a[m - 1], {m, 1, n}] (* A188516 *) (* Additional programs *) LinearRecurrence[{5,-6,-4,10,-2,-3,1},{1,5,21,70,214,614,1703},30] (* Harvey P. Dale, Jul 23 2015 *) With[{F=Fibonacci}, Table[F[n+2]*F[n+3] -2*F[n+4] +n+4, {n,30}]] (* G. C. Greubel, Jul 23 2019 *)
-
PARI
vector(30, n, f=fibonacci; f(n+2)*f(n+3) -2*f(n+4) +n+4) \\ G. C. Greubel, Jul 23 2019
-
Sage
f=fibonacci; [f(n+2)*f(n+3)-2*f(n+4) +n+4 for n in (1..30)] # G. C. Greubel, Jul 23 2019
Formula
G.f.: x*(1+2*x^2-x^3)/((1+x)*(1-3*x+x^2)*(1-x-x^2)*(1-x)^2). - R. J. Mathar, Dec 20 2011
a(n) = Fibonacci(n+2)*Fibonacci(n+3) - 2*Fibonacci(n+4) + n + 4. - G. C. Greubel, Jul 23 2019
Comments