cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202477 The number of ways to build all endofunctions on each block of every set partition of {1,2,...,n}.

Original entry on oeis.org

1, 1, 5, 40, 437, 6036, 100657, 1965160, 43937385, 1106488720, 30982333661, 954607270464, 32090625710365, 1168646120904640, 45826588690845705, 1924996299465966976, 86231288506425806033, 4103067277186778016000, 206655307175847710248885
Offset: 0

Views

Author

Geoffrey Critzer, Dec 19 2011

Keywords

Crossrefs

Cf. A000262 (the same for permutations), A137452.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(i^(i*j)*b(n-i*j, i-1)*
           multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 29 2016
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}] ;
    Range[0, nn]! CoefficientList[Series[Exp[t/(1 - t)], {x, 0, nn}], x]

Formula

E.g.f.: exp(T(x)/(1-T(x))) where T(x) is the e.g.f. for A000169.
a(n) ~ n^(n-1/3) * exp(3/2*n^(1/3) - 2/3) / sqrt(3). - Vaclav Kotesovec, Sep 24 2013
a(n) = Sum_{k=0..n} n^(n-k)*binomial(n-1,k-1)*A000262(k). - Fabian Pereyra, Jul 12 2024
The above formula can be written with the Abel polynomials: a(n) = Sum_{k=0..n} (-1)^(n - k) * A137452(n, k) * A000262(k). - Peter Luschny, Jul 13 2024