cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202688 Decimal expansion of Sum_{n>=0} (-1)^n / n!!.

Original entry on oeis.org

2, 3, 8, 0, 3, 5, 1, 3, 6, 0, 5, 7, 6, 8, 0, 1, 4, 9, 1, 5, 7, 8, 2, 6, 0, 7, 6, 3, 9, 5, 0, 4, 8, 5, 3, 0, 3, 3, 0, 2, 9, 7, 4, 7, 5, 0, 8, 4, 9, 5, 5, 8, 1, 3, 8, 5, 0, 4, 3, 9, 8, 4, 3, 4, 7, 5, 8, 7, 9, 2, 2, 2, 7, 0, 3, 8, 1, 7, 6, 8, 1, 5, 1, 7, 3, 6, 7
Offset: 0

Views

Author

Michel Lagneau, Dec 24 2011

Keywords

Examples

			0.23803513605768014915782607639504...
		

Crossrefs

Cf. A006882 (n!!), A143280 (m(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(112)); R:= RealField(); Exp(1/2)*(1 - Sqrt(Pi(R)/2)*Erf(1/Sqrt(2)) ); // G. C. Greubel, Mar 28 2019
    
  • Maple
    with(numtheory):Digits:=200:s:=evalf(sum(ā€˜((-1)^(i+1))*doublefactorial(i)/i! ’,’i’=1..100)):print(s):
  • Mathematica
    RealDigits[N[Sum[((-1)^(n+1))/n!!,{n,0,100}],105]][[1]]
    RealDigits[Sqrt[E] - Sqrt[(E*Pi)/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* G. C. Greubel, Mar 28 2019 *)
  • PARI
    exp(.5) - sqrt(exp(1)*Pi/2)*(1-erfc(sqrt(.5))) \\ Charles R Greathouse IV, Nov 21 2016
    
  • Sage
    numerical_approx(exp(1/2)*(1 - sqrt(pi/2)*erf(1/sqrt(2))), digits=112) # G. C. Greubel, Mar 28 2019

Formula

Equals Sum_{n>=1} (-1)^(n+1)*n!! /n!.
Equals sqrt(e) - sqrt(e*Pi/2)*erf(1/sqrt(2)).

Extensions

Terms a(80) onward corrected by G. C. Greubel, Mar 28 2019
Name corrected by Thomas Ordowski, Oct 22 2024