A202829 Expansion of e.g.f.: exp(4*x/(1-3*x)) / sqrt(1-9*x^2).
1, 4, 49, 676, 13225, 293764, 7890481, 236359876, 8052729169, 300797402500, 12388985000401, 551925653637604, 26614517015830969, 1373655853915667716, 75803216516463190225, 4440662493517062816004, 275697752917311709134241, 18052104090118575573856516
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 4*x + 49*x^2/2! + 676*x^3/3! + 13225*x^4/4! + 293764*x^5/5! + ... were A(x) = 1 + 2^2*x + 7^2*x^2/2! + 26^2*x^3/3! + 115^2*x^4/4! + 542^2*x^5/5! + ... + A202830(n)^2*x^n/n! + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..350
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(4*x/(1-3*x))/Sqrt(1-9*x^2) ))); // G. C. Greubel, Jun 21 2022 -
Mathematica
With[{nn=20},CoefficientList[Series[Exp[(4x)/(1-3x)]/Sqrt[1-9x^2],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Mar 09 2012 *)
-
PARI
{a(n)=n!*polcoeff(exp(4*x/(1-3*x)+x*O(x^n))/sqrt(1-9*x^2+x*O(x^n)),n)}
-
PARI
{a(n)=sum(k=0,n\2,2^(n-3*k)*3^k*n!/((n-2*k)!*k!))^2}
-
SageMath
def A202829_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(4*x/(1-3*x))/sqrt(1-9*x^2) ).egf_to_ogf().list() A202829_list(40) # G. C. Greubel, Jun 21 2022
Formula
a(n) = ( Sum_{k=0..[n/2]} 2^(n-3*k)*3^k * n!/((n-2*k)!*k!) )^2.
a(n) ~ n^n*exp(4*sqrt(n/3)-2/3-n)*3^n/2. - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = (3*n+1)*a(n-1) + 3*(n-1)*(3*n+1)*a(n-2) - 27*(n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013