A203002
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A203001; by antidiagonals.
Original entry on oeis.org
1, -1, 1, -3, 1, 1, -14, 21, -1, 1, -29, 162, -120, 1, 1, -48, 540, -1736, 844, -1, 1, -71, 1267, -8091, 17022, -5664, 1, 1, -98, 2475, -24908, 105503, -158690, 39045, -1, 1, -129, 4312, -60994, 408508, -1250056, 1416673
Offset: 1
Top of the array:
1...-1
1...-3....1
1...-14...21....-1
1...-29...162...-120...1
-
f[k_] := Fibonacci[k]^2;
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
A202605
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the Fibonacci self-fusion matrix (A202453).
Original entry on oeis.org
1, -1, 1, -3, 1, 1, -6, 9, -1, 1, -9, 26, -24, 1, 1, -12, 52, -96, 64, -1, 1, -15, 87, -243, 326, -168, 1, 1, -18, 131, -492, 1003, -1050, 441, -1, 1, -21, 184, -870, 2392, -3816, 3265, -1155, 1, 1, -24, 246, -1404, 4871, -10500, 13710
Offset: 1
The 1st principal submatrix (ps) of A202453 is {{1}} (using Mathematica matrix notation), with p(1) = 1-x and zero-set {1}.
...
The 2nd ps is {{1,1},{1,2}}, with p(2) = 1-3x+x^2 and zero-set {0.382..., 2.618...}.
...
The 3rd ps is {{1,1,2},{1,2,3},{2,3,6}}, with p(3) = 1-6x+9x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}.
...
Top of the array A202605:
1, -1;
1, -3, 1;
1, -6, 9, -1;
1, -9, 26, -24, 1;
1, -12, 52, -96, 64, -1;
1, -15, 87, -243, 326, -168, 1;
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
-
f[k_] := Fibonacci[k];
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
A115255
"Correlation triangle" of central binomial coefficients A000984.
Original entry on oeis.org
1, 2, 2, 6, 5, 6, 20, 14, 14, 20, 70, 46, 41, 46, 70, 252, 160, 134, 134, 160, 252, 924, 574, 466, 441, 466, 574, 924, 3432, 2100, 1672, 1534, 1534, 1672, 2100, 3432, 12870, 7788, 6118, 5506, 5341, 5506, 6118, 7788, 12870, 48620, 29172, 22692, 20152, 19174
Offset: 0
Triangle begins:
1;
2, 2;
6, 5, 6;
20, 14, 14, 20;
70, 46, 41, 46, 70;
252, 160, 134, 134, 160, 252;
Northwest corner (square format):
1 2 6 20 70
2 5 14 46 160
6 14 41 134 466
20 46 134 441 1534
-
s[k_] := Binomial[2 k - 2, k - 1];
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]]; (* A115255 in square format *)
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]; Table[f[n], {n, 1, 12}]
Table[Sqrt[f[n]], {n, 1, 12}] (* A006134 *)
Table[m[1, j], {j, 1, 12}] (* A000984 *)
Table[m[j, j], {j, 1, 12}] (* A115257 *)
Table[m[j, j + 1], {j, 1, 12}] (* 2*A082578 *)
(* Clark Kimberling, Dec 27 2011 *)
A203003
Symmetric matrix based on A007598(n+1), by antidiagonals.
Original entry on oeis.org
1, 4, 4, 9, 17, 9, 25, 40, 40, 25, 64, 109, 98, 109, 64, 169, 281, 265, 265, 281, 169, 441, 740, 685, 723, 685, 740, 441, 1156, 1933, 1802, 1865, 1865, 1802, 1933, 1156, 3025, 5065, 4709, 4910, 4819, 4910, 4709, 5065, 3025, 7921, 13256, 12337, 12827
Offset: 1
Northwest corner:
1....4.....9....25....64
4....17....40...109...281
9....40....98...265...685
25...109...265..1865
-
s[k_] := Fibonacci[k + 1]^2;
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]]; (* A203003 *)
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]; Table[f[n], {n, 1, 12}]
Table[Sqrt[f[n]], {n, 1, 12}] (* A119996 *)
Table[m[1, j], {j, 1, 12}] (* A007598(n+1) *)
Showing 1-4 of 4 results.
Comments