cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203307 a(n) = v(n+1)/(2*v(n)), where v = A203305.

Original entry on oeis.org

1, 12, 672, 161280, 159989760, 645078712320, 10486399547473920, 684552162459097497600, 179100751368498596492083200, 187617350297573441752474740326400, 786539962489104046627462744981792358400
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]])/2: n in [1..20]]; // G. C. Greubel, Aug 31 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= 2^j - 1; z = 15;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]         (* A203305 *)
    Table[v[n+1]/v[n], {n,z}]  (* A028365 *)
    %/2                         (* A203307 *)
    (* Second program *)
    Table[(-1)^n*2^Binomial[n+1,2]*QPochhammer[2,2,n]/2, {n,20}] (* G. C. Greubel, Aug 31 2023 *)
  • SageMath
    [product(2^(n+1) - 2^(k+1) for k in range(n))/2 for n in range(1,21)] # G. C. Greubel, Aug 31 2023

Formula

a(n) = (1/2)*A028365(n) for n>0.
a(n) = (-1)^n * 2^(binomial(n+1,2) - 1) * QPochhammer(2,2,n). - G. C. Greubel, Aug 31 2023