A203418 Vandermonde determinant of the first n composite numbers (A002808).
1, 2, 16, 240, 11520, 13271040, 254803968000, 15892123484160000, 5126163351050649600000, 89288743527804466888704000000, 50689719717698351557731837542400000000, 125765178831579421305165126665125232640000000000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..42
Programs
-
Magma
A002808:=[n: n in [2..250] | not IsPrime(n)]; a:= func< n | n eq 0 select 1 else (&*[(&*[A002808[k+2] - A002808[j+1]: j in [0..k]]): k in [0..n-1]]) >; [a(n): n in [0..20]]; // G. C. Greubel, Feb 24 2024
-
Mathematica
composite = Select[Range[100], CompositeQ]; (* A002808 *) z = 20; f[j_]:= composite[[j]]; v[n_]:= Product[Product[f[k] - f[j], {j, 1, k-1}], {k, 2, n}]; d[n_]:= Product[(i - 1)!, {i, 1, n}]; Table[v[n], {n,z}] (* this sequence *) Table[v[n+1]/v[n], {n,z}] (* A203419 *) Table[v[n]/d[n], {n,z}] (* A203420 *)
-
SageMath
A002808=[n for n in (2..250) if not is_prime(n)] def a(n): return product(product( A002808[k+1] - A002808[j] for j in range(k+1)) for k in range(n)) [a(n) for n in range(15)] # G. C. Greubel, Feb 24 2024
Comments