A203425 a(n) = w(n+1)/(4*w(n)), where w = A203424.
-1, 9, -128, 2500, -62208, 1882384, -67108864, 2754990144, -128000000000, 6639980697856, -380420285792256, 23857239165420544, -1625527855624486912, 119574225000000000000, -9444732965739290427392
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..350
Crossrefs
Cf. A203424.
Programs
-
Magma
[(-2*(n+1))^n/4: n in [1..20]]; // G. C. Greubel, Dec 06 2023
-
Mathematica
(* First program *) f[j_] := 1/(2 j); z = 16; v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}] 1/Table[v[n], {n, z}] (* A203424 *) Table[v[n]/(4 v[n + 1]), {n, z}] (* A203425 *) (* Second program *) Table[(-2*(n+1))^n/4, {n, 20}] (* G. C. Greubel, Dec 06 2023 *)
-
PARI
for(n=1, 25, print1((1/4)*(-2*(n+1))^n, ", ")) \\ G. C. Greubel, Jan 28 2017
-
SageMath
[(-2*(n+1))^n/4 for n in range(1,21)] # G. C. Greubel, Dec 06 2023
Formula
a(n) = (1/4)*(-2*(n+1))^n. - Andrei Asinowski, Nov 03 2015
E.g.f.: (1/4)*(LambertW(2*x)/(2*x*(1 + LambertW(2*x))) - 1). - G. C. Greubel, Dec 06 2023