cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A203424 Reciprocal of Vandermonde determinant of (1/2,1/4,...,1/(2n)).

Original entry on oeis.org

1, -4, -144, 73728, 737280000, -183458856960000, -1381360067999170560000, 370806019753548356895375360000, 4086267719027580129096614223921807360000, -2092169072142121026097466482647965368320000000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as in A203425.

Crossrefs

Programs

  • Magma
    BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
    A203424:= func< n| (-2)^Binomial(n, 2)*(Factorial(n))^n/BarnesG(n+2) >;
    [A203424(n): n in [1..20]]; // G. C. Greubel, Dec 07 2023
    
  • Mathematica
    (* First program *)
    f[j_] := 1/(2 j); z = 16;
    v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}];
    1/Table[v[n], {n, z}]             (* A203424 *)
    Table[v[n]/(4 v[n + 1]), {n, z}]  (* A203425 *)
    (* Second program *)
    Table[(-2)^Binomial[n,2]*(n!)^n/BarnesG[n+2], {n,20}] (* G. C. Greubel, Dec 07 2023 *)
  • PARI
    a(n) = prod(k=2,n, (-k)^(k-1)) << binomial(n,2); \\ Kevin Ryde, May 03 2022
    
  • SageMath
    def BarnesG(n): return product(factorial(k) for k in range(n-1))
    def A203424(n): return (-2)^binomial(n, 2)*(gamma(n+1))^n/BarnesG(n+2)
    [A203424(n) for n in range(1, 21)] # G. C. Greubel, Dec 07 2023

Formula

a(n) = Product_{k=1..n} (-2k)^(k-1). - Andrei Asinowski, Nov 03 2015
a(n) ~ (-1)^(n*(n-1)/2) * A * 2^(n^2/2 - n/2 - 1/2) * n^(n^2/2 - n/2 - 5/12) / (sqrt(Pi) * exp(n^2/4-n)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Dec 05 2015
a(n) = 2^binomial(n,2) * A203421(n). - Kevin Ryde, May 03 2022
a(n) = (-2)^binomial(n,2) * (n!)^n / BarnesG(n+2). - G. C. Greubel, Dec 07 2023

A203427 a(n) = w(n+1)/(4*w(n)), where w = A203426.

Original entry on oeis.org

-3, 48, -1000, 25920, -806736, 29360128, -1224440064, 57600000000, -3018173044480, 174359297654784, -11011033460963328, 754709361539940352, -55801305000000000000, 4427218577690292387840, -375183514207494575620096, 33824309717272203758665728, -3232463698006063164519284736, 326417514496000000000000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(-2*(n+2))^n*(n+1)/4: n in [1..20]]; // G. C. Greubel, Dec 05 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= 1/(2 j + 2); z = 12;
    v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}];
    1/Table[v[n], {n, z}]               (* A203426 *)
    Table[v[n]/(4 v[n + 1]), {n, z}]    (* A203427 *)
    (* Second program *)
    Table[(-2*(n+2))^n*(n+1)/4, {n,20}] (* G. C. Greubel, Dec 05 2023 *)
  • SageMath
    [(-2*(n+2))^n*(n+1)/4 for n in range(1,21)] # G. C. Greubel, Dec 05 2023

Formula

a(n) = (1/4) * (n+1) * (-2*(n+2))^n. - Andrei Asinowski, Nov 03 2015

Extensions

Name corrected by Andrei Asinowski, Nov 03 2015
Terms a(14) onward added by G. C. Greubel, Dec 05 2023
Showing 1-2 of 2 results.