A203425
a(n) = w(n+1)/(4*w(n)), where w = A203424.
Original entry on oeis.org
-1, 9, -128, 2500, -62208, 1882384, -67108864, 2754990144, -128000000000, 6639980697856, -380420285792256, 23857239165420544, -1625527855624486912, 119574225000000000000, -9444732965739290427392
Offset: 1
-
[(-2*(n+1))^n/4: n in [1..20]]; // G. C. Greubel, Dec 06 2023
-
(* First program *)
f[j_] := 1/(2 j); z = 16;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
1/Table[v[n], {n, z}] (* A203424 *)
Table[v[n]/(4 v[n + 1]), {n, z}] (* A203425 *)
(* Second program *)
Table[(-2*(n+1))^n/4, {n, 20}] (* G. C. Greubel, Dec 06 2023 *)
-
for(n=1, 25, print1((1/4)*(-2*(n+1))^n, ", ")) \\ G. C. Greubel, Jan 28 2017
-
[(-2*(n+1))^n/4 for n in range(1,21)] # G. C. Greubel, Dec 06 2023
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A203421
Reciprocal of Vandermonde determinant of (1,1/2,...,1/n).
Original entry on oeis.org
1, 1, -2, -18, 1152, 720000, -5598720000, -658683809280000, 1381360067999170560000, 59463021447701323327733760000, -59463021447701323327733760000000000000, -1542317635347398938581016812202229760000000000000
Offset: 0
-
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
A203421:= func< n | (-1)^Binomial(n,2)*(Factorial(n))^n/BarnesG(n+2) >;
[A203421(n): n in [1..20]]; // G. C. Greubel, Dec 07 2023
-
(* First program *)
f[j_] := 1/j; z = 12;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}]
1/% (* A203421 *)
Table[v[n]/v[n + 1], {n, 1, z}] (* A000169 signed *)
(* Additional programs *)
Table[(-1)^Floor[n/2]*Product[(k + 1)^k, {k, 0, n-1}], {n, 1, 10}] (* Vaclav Kotesovec, Oct 18 2015 *)
Table[(-1)^Binomial[n,2]*(n!)^n/BarnesG[n+2], {n, 20}] (* G. C. Greubel, Dec 07 2023 *)
-
a(n) = prod(i=2,n, (-i)^(i-1)); \\ Kevin Ryde, Apr 17 2022
-
def BarnesG(n): return product(factorial(k) for k in range(n-1))
def A203421(n): return (-1)^binomial(n, 2)*(gamma(n+1))^n/BarnesG(n+2)
[A203421(n) for n in range(1, 21)] # G. C. Greubel, Dec 07 2023
A203426
Reciprocal of Vandermonde determinant of (1/4,1/6,...,1/(2n+2)).
Original entry on oeis.org
1, -12, -2304, 9216000, 955514880000, -3083393008926720000, -362115253665574567280640000, 1773553697494609431031516590243840000, 408626771902758012909661422392180736000000000000, -4933225232839126697329071833709661506078108549120000000000000
Offset: 1
-
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
A203426:= func< n | (-2)^Binomial(n,2)*Factorial(n)*(Factorial(n+1))^n/BarnesG(n+3) >;
[A203426(n): n in [1..20]]; // G. C. Greubel, Dec 05 2023
-
with(LinearAlgebra):
a:= n-> 1/Determinant(VandermondeMatrix([1/(2*i+2)$i=1..n])):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
-
(* First program *)
f[j_] := 1/(2 j + 2); z = 12;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}];
1/Table[v[n], {n, 1, z}] (* A203426 *)
Table[v[n]/(4 v[n + 1]), {n, 1, z}] (* A203427 *)
(* Second program *)
Table[(-2)^Binomial[n,2]*n!*(Gamma[n+2])^n/BarnesG[n+3], {n,20}] (* G. C. Greubel, Dec 05 2023 *)
-
def BarnesG(n): return product(factorial(k) for k in range(n-1))
def A203426(n): return (-2)^binomial(n,2)*gamma(n+1)*(gamma(n+2))^n/BarnesG(n+3)
[A203426(n) for n in range(1,21)] # G. C. Greubel, Dec 05 2023
A203428
Reciprocal of Vandermonde determinant of (1/3,1/6,...,1/(3n)).
Original entry on oeis.org
1, -6, -486, 839808, 42515280000, -80335512599040000, -6890065294166289123840000, 31601087581187838970614157148160000, 8925080517850366815864624583251321642024960000
Offset: 1
-
Barnes:= func< n | (&*[Factorial(j): j in [1..n-1]]) >;
A203428:= func< n | (-3)^Binomial(n,2)*(Factorial(n))^n/Barnes(n+1) >;
[A203428(n): n in [1..25]]; // G. C. Greubel, Sep 28 2023
-
(* First program *)
f[j_]:= 1/(3*j); z = 16;
v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
1/Table[v[n], {n,z}] (* A203428 *)
Table[v[n]/(3*v[n+1]), {n,z}] (* A203429 *)
(* Second program *)
Table[(-3)^Binomial[n,2]*(Gamma[n+1])^(n-1)/BarnesG[n+1], {n,20}] (* G. C. Greubel, Sep 28 2023 *)
-
def barnes(n): return product(factorial(j) for j in range(n))
def A203428(n): return (-3)^binomial(n,2)*(factorial(n))^n/barnes(n+1)
[A203428(n) for n in range(1,21)] # G. C. Greubel, Sep 28 2023
Showing 1-5 of 5 results.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions