A203427 a(n) = w(n+1)/(4*w(n)), where w = A203426.
-3, 48, -1000, 25920, -806736, 29360128, -1224440064, 57600000000, -3018173044480, 174359297654784, -11011033460963328, 754709361539940352, -55801305000000000000, 4427218577690292387840, -375183514207494575620096, 33824309717272203758665728, -3232463698006063164519284736, 326417514496000000000000000000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..345
Programs
-
Magma
[(-2*(n+2))^n*(n+1)/4: n in [1..20]]; // G. C. Greubel, Dec 05 2023
-
Mathematica
(* First program *) f[j_]:= 1/(2 j + 2); z = 12; v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]; 1/Table[v[n], {n, z}] (* A203426 *) Table[v[n]/(4 v[n + 1]), {n, z}] (* A203427 *) (* Second program *) Table[(-2*(n+2))^n*(n+1)/4, {n,20}] (* G. C. Greubel, Dec 05 2023 *)
-
SageMath
[(-2*(n+2))^n*(n+1)/4 for n in range(1,21)] # G. C. Greubel, Dec 05 2023
Formula
a(n) = (1/4) * (n+1) * (-2*(n+2))^n. - Andrei Asinowski, Nov 03 2015
Extensions
Name corrected by Andrei Asinowski, Nov 03 2015
Terms a(14) onward added by G. C. Greubel, Dec 05 2023
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions