cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203472 a(n) = Product_{3 <= i < j <= n+2} (i + j).

Original entry on oeis.org

1, 7, 504, 498960, 8562153600, 3085457671296000, 27493649380770693120000, 6982164025191299372050022400000, 57286678477842677171688269225656320000000, 16987900892972660430046341200043192304533504000000000, 201504981205067832055356568153709798734509139298353152000000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as in A203470. It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n), as in A203474.

Crossrefs

Programs

  • Magma
    [(&*[(&*[i+j: i in [3..j]])/(2*j): j in [3..n+2]]): n in [1..20]]; // G. C. Greubel, Aug 26 2023
    
  • Maple
    a:= n-> mul(mul(i+j, i=3..j-1), j=4..n+2):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    (* First program *)
    f[j_]:= j + 2;    z = 16;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}] (* A000178 *)
    Table[v[n], {n,z}]             (* A203472 *)
    Table[v[n+1]/v[n], {n,z-1}]    (* A203473 *)
    Table[v[n]/d[n], {n,20}]       (* A203474 *)
    (* Second program *)
    Table[(18*2^(n+2)^2/Pi^(n/2))*BarnesG[n+3]*BarnesG[n+7/2]/(BarnesG[n+ 6]*BarnesG[7/2]), {n,20}] (* G. C. Greubel, Aug 26 2023 *)
  • SageMath
    [product( gamma(2*j)/gamma(j+3) for j in range(3,n+3) ) for n in range(1,20)] # G. C. Greubel, Aug 26 2023

Formula

a(n) ~ 3*sqrt(A) * 2^(n^2 + 9*n/2 + 185/24) * n^(n^2/2 - n/2 - 179/24) / (Pi^(3/2) * exp(3*n^2/4 - n/2 + 1/24)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 09 2021
From G. C. Greubel, Aug 26 2023: (Start)
a(n) = Prod_{j=3..n+2} Prod_{i=3..j-1} (i + j).
a(n) = Prod_{j=3..n+2} Gamma(2*j)/Gamma(j+3).
a(n) = (18*2^(n+2)^2/Pi^(n/2))*BarnesG(n+3)*BarnesG(n+7/2)/(BarnesG(n+ 6)*BarnesG(7/2)). (End)

Extensions

Name edited by Alois P. Heinz, Jul 23 2017