cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203473 a(n) = v(n+1)/v(n), where v=A203472.

Original entry on oeis.org

7, 72, 990, 17160, 360360, 8910720, 253955520, 8204716800, 296541907200, 11861676288000, 520431047136000, 24858235898496000, 1284342188088960000, 71382386874839040000, 4247252019052922880000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Gamma(2*n+6)/Gamma(n+6)): n in [1..16]]; // G. C. Greubel, Aug 27 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= j+2; z=16;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}];
    d[n_]:= Product[(i-1)!, {i,n}]  (* A000178 *)
    Table[v[n], {n,z}]              (* A203472 *)
    Table[v[n+1]/v[n], {n,z-1}]     (* this sequence *)
    Table[v[n]/d[n], {n,20}]        (* A203474 *)
    (* Second program *)
    Table[Pochhammer[n+6,n], {n,20}] (* G. C. Greubel, Aug 27 2023 *)
  • SageMath
    [rising_factorial(n+6, n) for n in range(1,16)] # G. C. Greubel, Aug 27 2023

Formula

a(n) ~ 2^(2*n + 11/2) * n^n / exp(n). - Vaclav Kotesovec, Apr 09 2021
a(n) = RisingFactorial(6 + n, n). - Peter Luschny, Mar 22 2022
Since v(n) = (135/4)*(2^(n+2)^2/Pi^(n/2))*(BarnesG(n+3)*BarnesG(n+7/2) )/( BarnesG(9/2)*BarnesG(n+6) ) then v(n+1)/v(n) = Gamma(2*n+6) / Gamma(n+6). - G. C. Greubel, Aug 27 2023

A203474 a(n) = A203472(n) / A000178(n-1), where A000178 are the superfactorials.

Original entry on oeis.org

1, 7, 252, 41580, 29729700, 89278289100, 1104908105901600, 55674109640169820800, 11329124570678156834592000, 9258047307912482983660236480000, 30262334718212007877669234596364800000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[ Binomial(2*j+3, j+4): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 27 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= j+2; z=16;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}];
    d[n_]:= Product[(i-1)!, {i,n}]  (* A000178(n-1) *)
    Table[v[n], {n,z}]              (* A203472 *)
    Table[v[n+1]/v[n], {n,z-1}]     (* A203473 *)
    Table[v[n]/d[n], {n,20}]        (* A203474 *)
    (* Second program *)
    Table[Product[Binomial[2*j+3, j+4], {j,n}], {n,20}] (* G. C. Greubel, Aug 27 2023 *)
  • SageMath
    [product( binomial(2*j+5,j+5) for j in range(n) ) for n in range(1,20)] # G. C. Greubel, Aug 27 2023

Formula

a(n) ~ 3*A^(3/2) * 2^(n^2 + 4*n + 185/24) * exp(n/2 - 1/8) / (Pi^(n/2 + 3/2) * n^(n/2 + 59/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 09 2021
From G. C. Greubel, Aug 27 2023: (Start)
a(n) = Product_{j=1..n} binomial(2*j+3, j+4).
a(n) = (18*2^(n+2)^2/Pi^(n/2))*BarnesG(n+3)*BarnesG(n+7/2)/( BarnesG(n +1)*BarnesG(n+6)*BarnesG(7/2)). (End)

Extensions

Definition corrected by Vaclav Kotesovec, Apr 09 2021

A093883 Product of all possible sums of two distinct numbers taken from among first n natural numbers.

Original entry on oeis.org

1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1

Views

Author

Amarnath Murthy, Apr 22 2004

Keywords

Comments

From Clark Kimberling, Jan 02 2013: (Start)
Each term divides its successor, as in A006963, and by the corresponding superfactorial, A000178(n), as in A203469.
Abbreviate "Vandermonde" as V. The V permanent of a set S={s(1),s(2),...,s(n)} is a product of sums s(j)+s(k) in analogy to the V determinant as a product of differences s(k)-s(j). Let D(n) and P(n) denote the V determinant and V permanent of S, and E(n) the V determinant of the numbers s(1)^2, s(2)^2, ..., s(n)^2; then P(n) = E(n)/D(n). This is one of many divisibility properties associated with V determinants and permanents. Another is that if S consists of distinct positive integers, then D(n) divides D(n+1) and P(n) divides P(n+1).
Guide to related sequences:
...
s(n).............. D(n)....... P(n)
n................. A000178.... (this)
n+1............... A000178.... A203470
n+2............... A000178.... A203472
n^2............... A202768.... A203475
2^(n-1)........... A203303.... A203477
2^n-1............. A203305.... A203479
n!................ A203306.... A203482
n(n+1)/2.......... A203309.... A203511
Fibonacci(n+1).... A203311.... A203518
prime(n).......... A080358.... A203521
odd prime(n)...... A203315.... A203524
nonprime(n)....... A203415.... A203527
composite(n)...... A203418.... A203530
2n-1.............. A108400.... A203516
n+floor(n/2)...... A203430
n+floor[(n+1)/2].. A203433
1/n............... A203421
1/(n+1)........... A203422
1/(2n)............ A203424
1/(2n+2).......... A203426
1/(3n)............ A203428
Generalizing, suppose that f(x,y) is a function of two variables and S=(s(1),s(2),...s(n)). The phrase, "Vandermonde sequence using f(x,y) applied to S" means the sequence a(n) whose n-th term is the product f(s(j,k)) : 1<=j
...
If f(x,y) is a (bivariate) cyclotomic polynomial and S is a strictly increasing sequence of positive integers, then a(n) consists of integers, each of which divides its successor. Guide to sequences for which f(x,y) is x^2+xy+y^2 or x^2-xy+y^2 or x^2+y^2:
...
s(n) ............ x^2+xy+y^2.. x^2-xy+y^2.. x^2+y^2
n ............... A203012..... A203312..... A203475
n+1 ............. A203581..... A203583..... A203585
2n-1 ............ A203514..... A203587..... A203589
n^2 ............. A203673..... A203675..... A203677
2^(n-1) ......... A203679..... A203681..... A203683
n! .............. A203685..... A203687..... A203689
n(n+1)/2 ........ A203691..... A203693..... A203695
Fibonacci(n) .... A203742..... A203744..... A203746
Fibonacci(n+1) .. A203697..... A203699..... A203701
prime(n) ........ A203703..... A203705..... A203707
floor(n/2) ...... A203748..... A203752..... A203773
floor((n+1)/2) .. A203759..... A203763..... A203766
For f(x,y)=x^4+y^4, see A203755 and A203770. (End)

Examples

			a(4) = (1+2)*(1+3)*(1+4)*(2+3)*(2+4)*(3+4) = 12600.
		

References

  • Amarnath Murthy, Another combinatorial approach towards generalizing the AM-GM inequality, Octagon Mathematical Magazine, Vol. 8, No. 2, October 2000.
  • Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal, Vol. 11, No. 1-2-3 Spring 2000.

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i+j, i=1..j-1), j=2..n):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[n_] := Product[(j + k), {k, 2, n}, {j, 1, k - 1}]; Array[f, 10] (* Robert G. Wilson v, Jan 08 2013 *)
  • PARI
    A093883(n)=prod(i=1,n,(2*i-1)!/i!)  \\ M. F. Hasler, Nov 02 2012

Formula

Partial products of A006963: a(n) = Product((2*i-1)!/i!, i=1..n). - Vladeta Jovovic, May 27 2004
G.f.: G(0)/(2*x) -1/x, where G(k)= 1 + 1/(1 - 1/(1 + 1/((2*k+1)!/(k+1)!)/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n) ~ sqrt(A/Pi) * 2^(n^2 + n/2 - 7/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 11/24), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 26 2019

Extensions

More terms from Vladeta Jovovic, May 27 2004
Showing 1-3 of 3 results.