A203477 a(n) = Product_{0 <= i < j <= n-1} (2^i + 2^j).
1, 3, 90, 97200, 14276736000, 1107198567383040000, 178601637561927097909248000000, 237856509917156074017606774172522905600000000, 10420480393274493153643458442091600404477248333907230720000000000
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..21
Programs
-
Magma
[(&*[(&*[2^j + 2^k: k in [0..j]])/2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
-
Maple
a:= n-> mul(mul(2^i+2^j, i=0..j-1), j=1..n-1): seq(a(n), n=1..10); # Alois P. Heinz, Jul 23 2017
-
Mathematica
(* First program *) f[j_]:= 2^(j-1); z = 13; v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}] Table[v[n], {n,z}] (* A203477 *) Table[v[n+1]/v[n], {n,z-1}] (* A203478 *) Table[v[n]*v[n+2]/(2*v[n+1]^2), {n,22}] (* A164051 *) (* Second program *) Table[Product[(2^j^2)*QPochhammer[-1/2^j,2,j], {j,0,n-1}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
-
PARI
a(n)=prod(i=0,n-2,prod(j=i+1,n-1,2^i+2^j)) \\ Charles R Greathouse IV, Feb 16 2021
-
SageMath
[product(product(2^j + 2^k for k in range(j)) for j in range(n)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023
Extensions
Name edited by Alois P. Heinz, Jul 23 2017
Comments