A203557 G.f.: exp( Sum_{n>=1} sigma(n^5)*x^n/n ).
1, 1, 32, 153, 1145, 5677, 37641, 184685, 1047862, 5196410, 26935148, 129702476, 638028933, 2987297287, 14055935617, 64139004752, 291595380989, 1296984485909, 5732084828019, 24910785830408, 107411267744602, 457008372687439, 1928413165110846, 8046605441623654
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 32*x^2 + 153*x^3 + 1145*x^4 + 5677*x^5 + 37641*x^6 +... where the logarithm equals the l.g.f. of A203556: log(A(x)) = x + 63/2*x^2 + 364/3*x^3 + 2047/4*x^4 + 3906/5*x^5 +...+ sigma(n^5)*x^n/n +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n,sigma(m^5)*x^m/m)+x*O(x^n)),n)}
Formula
Logarithmic derivative yields A203556.
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A203556(k)*a(n-k) for n > 0. - Seiichi Manyama, Sep 09 2020
log(a(n)) ~ 2^(3/2) * 3^(7/6) * c^(1/6) * n^(5/6) / 5^(5/6), where c = Product_{primes p} (p*(1 + p + p^2 + p^3 + p^5) / (p^6 - 1)) = 1.93252811194652723494722635658171746713... - Vaclav Kotesovec, Nov 01 2024
Comments