cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203571 Period length 10: [0, 1, 2, 3, 4, 0, 4, 3, 2, 1] repeated.

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 4, 3, 2, 1, 0, 1, 2, 3, 4, 0, 4, 3, 2, 1, 0, 1, 2, 3, 4, 0, 4, 3, 2, 1, 0, 1, 2, 3, 4, 0, 4, 3, 2, 1, 0, 1, 2, 3, 4, 0, 4, 3, 2, 1, 0, 1, 2, 3, 4, 0, 4, 3, 2, 1, 0, 1, 2, 3, 4, 0, 4, 3, 2, 1, 0, 1, 2, 3, 4, 0, 4, 3, 2, 1, 0, 1, 2, 3, 4, 0, 4, 3, 2, 1, 0, 1, 2, 3, 4, 0, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Wolfdieter Lang, Jan 11 2012

Keywords

Comments

This sequence can be continued periodically for negative values of n.
This is the fifth sequence of a k-family of sequences P_k, k>=1, which starts with A000007(n+1), n >= 0 (the 0-sequence), A000035, A193680, A193682, for k = 1, ..., 4, respectively.
In general, the sequence P_k, k >= 1 (periodically continued for negative values of n), is used to define the k equivalence classes [0], [1], ..., [k-1], with [j] := {n integer| P_k(n) = j}. Two integers are equivalent if and only if they are mapped by P_k to the same value. For P_5, P_6 and P_7 see the arrays (not the triangles) A090298, A092260 and A113807, respectively. In each of these cases the class [k] should be replaced by the class [0], and also negative n-values are allowed. Multiplication can be done class-wise. E.g., k = 5: P_5(n) = a(n), 7*12 == 3*2 = 6 == 4; a(7*12) = a(a(7)*a(12)) = a(3*2) = 4. This kind of multiplication could be called multiplication Modd n, in order to distinguish it from multiplication mod n. Addition cannot be done class-wise. E.g., k = 5: 7 + 12 = 19 == 1 is not equivalent to 3 + 2 = 5 == 0; a(7+12) = 1 is not equal to a(a(7) + a(12)) = a(3+2) = 0.
Periodic sequences of this type can be also calculated by a(n) = c + floor(q/(p^m-1)*p^n) mod p, where c is a constant, q is the number representing the periodic digit pattern and m is the period length. c, p and q can be calculated as follows: Let D be the array representing the number pattern to be repeated, m = size of D, max = maximum value of elements in D, min = minimum value of elements in D. Then c := min, p := max - min + 1 and q := p^m * Sum_{i=0..(m-1)} (D(i) - min)/p^i. Example: D = (0, 1, 2, 3, 4, 0, 4, 3, 2, 1), c = 0, m = 10, p = 5 and q = 3034180 for this sequence. - Hieronymus Fischer, Jan 04 2013 [Corrected by Rémi Guillaume, Aug 28 2024]
For periodic sequences with terms < 10 one can use the well-known fact that ab..z/99..9 = 0.ab..zab..zab..z... (infinite periodic decimal fraction), this leads to one of the given formulas. For the general case it is sufficient to shift the terms to nonnegative values and to switch to a sufficiently large basis instead of 10 (there are infinitely many choices). - M. F. Hasler, Jan 13 2013

Examples

			a(12) = 12 mod 5 = 2 since 12\5 = floor(12/5) = 2 is even; the sign is +1.
a(7) = -7 mod 5 = 3 since 7\5 = floor(7/5) = 1 is odd; the sign is -1.
		

Crossrefs

Programs

Formula

a(n) = n mod 5 if (-1)^floor(n/5) = +1 else -n mod 5, n >= 0. (-1)^floor(n/5) is the sign corresponding to the parity of the quotient floor(n/5). This quotient is sometimes denoted by n\5.
O.g.f.: x*(1+2*x+3*x^2+4*x^3+4*x^5+3*x^6+2*x^7+x^8)/(1-x^10) = -x*(1 +2*x +3*x^2 +4*x^3 +4*x^5 +3*x^6 +2*x^7 +x^8) / ( (x-1) *(1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) ).
a(n) = (2/5)*cos(Pi*n) - cos(4*Pi*n/5) - (1/5)*cos(3*Pi*n/5) + (2/5)*5^(1/2)*cos(3*Pi*n/5) - cos(2*Pi*n/5) - (1/5)*cos(Pi*n/5) - (2/5)*5^(1/2)*cos(Pi*n/5) + 2. - Leonid Bedratyuk, May 13 2012
a(n) = floor(123404321/9999999999*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 04 2013
a(n) = floor(151709/2441406*5^(n+1)) mod 5. - Hieronymus Fischer, Jan 04 2013
a(n) = (5-abs(n-(10*ceiling(n/10)-5)))*(ceiling((n+5)/10)-floor((n+5)/10)). - Wesley Ivan Hurt, Mar 26 2014 [corrected by Jason Yuen, Feb 17 2025]
a(n+10) = a(n) for n in Z; a(-n) = a(n) for n in Z. - Rémi Guillaume, Aug 28 2024