A203574 Bisection of A099924 (Lucas convolution); one half of the terms with odd arguments.
2, 11, 41, 137, 435, 1338, 4024, 11899, 34723, 100255, 286947, 815316, 2302286, 6466667, 18079805, 50343893, 139683219, 386328654, 1065440068, 2930780635, 8043131767, 22026515371, 60203886531, 164259660072, 447431169050, 1216927557323
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
Programs
-
Magma
I:=[2,11,41,137]; [n le 4 select I[n] else 6*Self(n-1) - 11*Self(n-2) + 6*Self(n-3) - Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 22 2017
-
Mathematica
CoefficientList[Series[(2-x-3x^2)/(1-3x+x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[{6,-11,6,-1},{2,11,41,137},30] (* Harvey P. Dale, Oct 12 2015 *)
-
PARI
x='x+O('x^30); Vec((2-x-3x^2)/(1-3x+x^2)^2) \\ G. C. Greubel, Dec 22 2017
Formula
a(n) = A099924(2*n+1)/2, n>=0.
O.g.f.: (2-x-3*x^2)/(1-3*x+x^2)^2.
a(n) = (3+2*n)*F(2*n) + (2+n)*F(2*n+1), with the Fibonacci numbers F(n)=A000045(n). From the partial fraction decomposition of the o.g.f. and the Fibonacci recurrence.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4); a(0)=2, a(1)=11, a(2)=41, a(3)=137. - Harvey P. Dale, Oct 12 2015
Comments