cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203611 a(n) = Sum_{k=0..n} binomial(k-1,2*k-1-n)*binomial(k,2*k-n), with a(0) = 1.

Original entry on oeis.org

1, 1, 1, 3, 7, 16, 39, 95, 233, 577, 1436, 3590, 9011, 22691, 57299, 145043, 367931, 935078, 2380405, 6068745, 15492702, 39598631, 101323446, 259522398, 665332007, 1707137941, 4383662419, 11264675925, 28966161253, 74530441162, 191879611399, 494265165151
Offset: 0

Views

Author

Peter Luschny, Jan 14 2012

Keywords

Comments

For the connection with Fibonacci meanders classified by maximal run length of 1s (see the link).
Apparently the number of grand Motzkin paths of length n+1 that avoid UU. - David Scambler, Jul 04 2013

Crossrefs

Cf. A110236, bisection of A202411.

Programs

  • Magma
    A203611:= func< n | n eq 0 select 1 else (&+[Binomial(k-1,2*k-n-1)*Binomial(k,2*k-n): k in [0..n]]) >;
    [A203611(n): n in [0..40]]; // G. C. Greubel, Mar 12 2025
    
  • Maple
    a := n -> hypergeom([-n/2, 1 - n/2, (1-n)/2, (1-n)/2], [1, -n, 1 - n], 16):
    seq(simplify(a(n)), n = 0..31); # Peter Luschny, Mar 24 2023
  • Mathematica
    a[n_] := Module[{a, r, b, c, d, z}, If[n == 0, Return[1]]; a = Quotient[n, 2]; r = n-1; b = a-r/2+1; c = a+1; d = a-r; z = If[Mod[n, 2] == 1, (n+1)/2, n^2*(n+2)/16]; z*HypergeometricPFQ[{1, c, c+1, d, d}, {b, b, b-1/2, b+1/2}, 1/16] ]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jun 27 2013, translated from Maple *)
    Table[Sum[Binomial[k-1,2k-1-n]Binomial[k,2k-n],{k,0,n}],{n,0,40}] (* Harvey P. Dale, May 25 2014 *)
  • PARI
    my(x='x+O('x^66)); Vec( 2*x/((1+x-x^2) * sqrt((x^2+x+1) * (x^2-3*x+1)) -x^4 +2*x^3 +x^2 +2*x -1) ) \\ Joerg Arndt, May 06 2013
    
  • SageMath
    def A203611(n): return 1 if n==0 else sum(binomial(k-1,2*k-n-1)*binomial(k,2*k-n) for k in range(n+1))
    print([A203611(n) for n in range(41)]) # G. C. Greubel, Mar 12 2025

Formula

For n>0 let A=floor(n/2), R = n-1, B = A - R/2 + 1, C = A+1, D = A-R and Z = (n+1)/2 if n mod 2 = 1, otherwise Z = n^2*(n+2)/16. Then a(n) = Z*Hypergeometric5F4([1,C,C+1,D,D],[B,B,B-1/2,B+1/2],1/16).
G.f.: 2*x/((1+x-x^2)*sqrt((1+x+x^2)*(1-3*x+x^2)) - (1-2*x-x^2-2*x^3+x^4)). - Mark van Hoeij, May 06 2013
a(n) ~ phi^(2*n + 1) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 08 2019
a(n) = hypergeom([-n/2, 1 - n/2, (1-n)/2, (1-n)/2], [1, -n, 1 - n], 16). - Peter Luschny, Mar 24 2023
D-finite with recurrence n*a(n) -(n+1)*a(n-1) -2*(2*n-5)*a(n-2) -(n+3)*a(n-3) +3*(n-5)*a(n-5) -(n-6)*a(n-6) = 0. - R. J. Mathar, Nov 22 2024