A132813
Triangle read by rows: A001263 * A127648 as infinite lower triangular matrices.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 12, 18, 4, 1, 20, 60, 40, 5, 1, 30, 150, 200, 75, 6, 1, 42, 315, 700, 525, 126, 7, 1, 56, 588, 1960, 2450, 1176, 196, 8, 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 1, 90, 1620, 10080, 26460, 31752, 17640, 4320, 405, 10
Offset: 0
First few rows of the triangle are:
1;
1, 2;
1, 6, 3;
1, 12, 18, 4;
1, 20, 60, 40, 5;
1, 30, 150, 200, 75, 6;
1, 42, 315, 700, 525, 126, 7;
...
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- N. Alexeev and A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
- C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv preprint arXiv:1204.0362 [math.CO], 2012.
- Robert. A. Sulanke, Counting Lattice Paths by Narayana Polynomials Electronic J. Combinatorics 7, No. 1, R40, 1-9, 2000.
-
Flat(List([0..10],n->List([0..n], k->(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1)))); # Muniru A Asiru, Feb 26 2019
-
a132813 n k = a132813_tabl !! n !! k
a132813_row n = a132813_tabl !! n
a132813_tabl = zipWith (zipWith (*)) a007318_tabl $ tail a007318_tabl
-- Reinhard Zumkeller, Apr 04 2014
-
/* triangle */ [[(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 19 2014
-
P := (n, x) -> hypergeom([1-n, -n], [1], x): for n from 1 to 9 do PolynomialTools:-CoefficientList(simplify(P(n,x)),x) od; # Peter Luschny, Nov 26 2014
-
T[n_,k_]=Binomial[n-1,k-1]*Binomial[n,k-1]; Table[Table[T[n,k],{k,1,n}],{n,1,11}]; Flatten[%] (* Roger L. Bagula, Apr 09 2008 *)
P[n_, x_] := HypergeometricPFQ[{1-n, -n}, {1}, x]; Table[CoefficientList[P[n, x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Peter Luschny *)
-
tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(binomial(n-1, k-1)*binomial(n, k-1) , ", ");););} \\ Michel Marcus, Feb 12 2014
-
def A132813(n,k): return binomial(n,k)*binomial(n+1,k)
print(flatten([[A132813(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 12 2025
A110236
Number of (1,0) steps in all peakless Motzkin paths of length n (can be easily translated into RNA secondary structure terminology).
Original entry on oeis.org
1, 2, 4, 10, 24, 58, 143, 354, 881, 2204, 5534, 13940, 35213, 89162, 226238, 575114, 1464382, 3734150, 9534594, 24374230, 62377881, 159793932, 409717004, 1051405260, 2700168229, 6939388478, 17845927498, 45922416814, 118238842174
Offset: 1
a(3)=4 because in the 2 (=A004148(3)) peakless Motzkin paths of length 3, namely HHH and UHD (where U=(1,1), H=(1,0) and D=(1,-1)), we have altogether 4 H steps.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, Grand Dyck paths with air pockets, arXiv:2211.04914 [math.CO], 2022.
- W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
- M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
-
T:=proc(n,k) if n+k mod 2 = 0 then 2*binomial((n+k)/2,k)*binomial((n+k)/2,k-1)/(n+k) else 0 fi end:seq(add(k*T(n,k),k=1..n),n=1..33);
-
Rest[CoefficientList[Series[((1-x+x^2)*((x^2+x+1)*(x^2-3*x+1))^(-1/2)-1) /(2*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
-
x='x+O('x^66); Vec(((1-x+x^2)*((x^2+x+1)*(x^2-3*x+1))^(-1/2)-1)/(2*x)) /* Joerg Arndt, Mar 27 2013 */
A202411
a(n) = Sum_{k=floor(n/4)..R} C(k, m*k - (-1)^n*(R - k)) * C(k + 1, m*(k + 2) - (-1)^n*(R - k + 1)) where m = (n + 1) mod 2 and R = (n + m - 3)/2 for n > 0 and a(0) = 1.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 3, 4, 7, 10, 16, 24, 39, 58, 95, 143, 233, 354, 577, 881, 1436, 2204, 3590, 5534, 9011, 13940, 22691, 35213, 57299, 89162, 145043, 226238, 367931, 575114, 935078, 1464382, 2380405, 3734150, 6068745, 9534594, 15492702, 24374230, 39598631
Offset: 0
Fibonacci meanders classified by maximal run length of 1s (see the link) lead to the triangle
0, 1;
1, 1, 0, 1;
2, 1, 1, 1, 0, 1;
4, 3, 2, 1, 1, 1, 0, 1;
10, 7, 4, 3, 2, 1, 1, 1, 0, 1;
24, 16, 10, 7, 4, 3, 2, 1, 1, 1, 0, 1.
-
A202411 := proc(n) local A, R, B, C, D, Z, H, J; if n = 0 then RETURN(1) fi;
H:=iquo(n,2); A:=iquo(H,2); R:=H-1; B:=A-R/2+1; C:=A+1; D:=A-R; J:=n mod 2; if J = 0 then Z:=`if`(H mod 2 = 1,(H+1)/2,H^2*(H+2)/16) else Z:=`if`(H mod 2 = 1,1, H*(H+2)/4) fi; Z*hypergeom([1,C,C+1,D,D-J],[B,B,B-1/2,B+1/2-J],1/16) end:
seq(simplify(A202411(i)),i=0..42);
-
A202411[0] = 1; A202411[n_] := Module[{A, R, B, C, D, Z, H, J}, H = Quotient[n, 2]; A = Quotient[H, 2]; R = H-1; B = A - R/2 + 1; C = A+1; D = A - R; J = Mod[n, 2]; If[J == 0, Z = If[Mod[H, 2] == 1, (H+1)/2, H^2*(H + 2)/16], Z = If[Mod[H, 2] == 1, 1, H*(H+2)/4]]; Z*HypergeometricPFQ[{1, C, C + 1, D, D - J}, {B, B, B - 1/2, B + 1/2 - J}, 1/16]]; Table[A202411[n], {n, 0, 42}]
(* Jean-François Alcover, Jan 27 2014, translated from Maple *)
A201631
a(n) is the number of Fibonacci meanders of length m*n and central angle 360/m degrees where m = 2.
Original entry on oeis.org
1, 3, 6, 13, 30, 70, 167, 405, 992, 2450, 6090, 15214, 38165, 96069, 242530, 613811, 1556856, 3956316, 10070871, 25674210, 65541142, 167517654, 428635032, 1097874434, 2814611701, 7221917871, 18544968768, 47655572191, 122544150258, 315313433594, 811792614547
Offset: 1
a(3) = 6 = card({100001, 100100, 110000, 111001, 111100, 111111}).
-
A201631 := n -> add(A202411(k),k=0..2*n-1): seq(A201631(i),i=1..9);
# Alternative, using the g.f. of Baril et al.:
S := (x^2 - x + 1 - R)/((x - 1)*(x^2 - x - 1 + R)*R):
R := (((x - 3)*x + 1)*(x^2 + x + 1))^(1/2): ser := series(S, x, 33):
seq(coeff(ser, x, n), n = 1..31); # Peter Luschny, Mar 16 2023
# Using a recurrence:
a := proc(n) option remember; if n < 5 then return [0, 1, 3, 6, 13][n + 1] fi;
(n*(2*n - 1)*(2*n - 3)*(n - 5)*a(n - 5) - (n - 4)*(2*n - 1)^2*(3*n - 5)*a(n - 4) + (2*n - 5)*(n - 3)*(2*n^2 - 3*n + 2)*a(n - 3) - (2*n - 3)*(n - 2)*(2*n^2 - 3*n + 5)*a(n - 2) + (3*n - 4)*(2*n - 1)*(2*n - 5)*(n - 1)*a(n - 1))/(n*(2*n - 3)*(2*n - 5)*(n - 1)) end: seq(a(n), n = 1..31); # Peter Luschny, Mar 16 2023
-
a[n_] := Sum[A202411[k], {k, 0, 2 n - 1}];
Array[a, 31] (* Jean-François Alcover, Jun 29 2019 *)
Showing 1-4 of 4 results.
Comments